
Simulation of high-index DAEs and ODEs with constraints in
FMI

Masoud Najafi

Altair Engineering, France, masoud@altair.com

Abstract

In the current FMI standard the dynamical behavior of a
model can only be defined as a system of Ordinary Dif-
ferential Equations (ODE). The dynamics of many phys-
ical systems, such as the equations of motion of con-
strained mechanical multibody systems, are expressed
by high-index Differential Algebraic Equations (DAE)
so they cannot be simulated directly using standard ODE
or DAE solvers. These systems can be converted through
index-reduction into ODE or index 1 DAE systems.
However FMUs based solely on these latter systems suf-
fer from drift in hidden constraints on the states. As a
consequence, the simulation may results in physically
meaningless solutions. In this paper, we propose an ex-
tension of the FMI standard to handle DAE Systems of
index 1 or higher and ODE with constraints. This FMI
extension requires only few additions to the FMI speci-
fication, all of which can be omitted for FMUs that rep-
resent ODE systems or FMUs that do not support DAE
handling. The extension has been implemented in solid-
Thinking ActivateTM and two examples that illustrate
the ease of implementation and the effectiveness of the
method will be discussed.
Keywords: Modelica, FMI, High index DAE, ODE with
constraints, Coordinate Projection

1 Introduction

Activate is primarily a signal-based modeling and sim-
ulation environment, but it supports also the Modelica
language. Modelica components can be mixed with stan-
dard signal blocks in a same diagram. Activate formal-
ism proposes a unique harmonious environment in which
signal-based Activate blocks and Modelica components
can co-exist in a same model.

In order to simulate an Activate model, the model
should be compiled. Compiling a model consists of pro-
ducing a structure to be used by the simulator. This struc-
ture contains all the information needed by the simulator
that can be computed before the start of the simulation. It
contains in particular all signal types and sizes informa-
tion, in addition to scheduling tables specifying the con-

dition and the order in which the computational functions
of the blocks are to be called during simulation.

The way Activate compiler handles the Modelica
components is by grouping them into a single Mod-
elica model with inputs and outputs that are clearly
specified by special interfacing blocks. This Modelica
model is then compiled by the Modelica compiler (the
MapleSimTM Modelica compiler is used in Activate),
which in turn generates an FMU for ModelExchange to
replace the Modelica part. The FMI has been chosen as
the exchange format because it is a standard already sup-
ported both by Activate and MapleSim. The ModelEx-
change implementation is used because it allows taking
advantage of different numerical solvers available in Ac-
tivate.

A simple example is provided in Figure 1. This
model contains an electrical circuit, modeled for the most
part using Modelica components. The regular Activate
blocks are the Sine Wave Generator and the Scope. There
are three interfacing blocks (green blocks) connecting
the Activate environment to the Modelica environment.

Figure 1. Simple Activate diagram containing Modelica com-
ponents.

The Modelica part is aggregated into a single block
as shown in Figure 2. This step is of course transparent
to the user and is presented here as an illustration of the
way the mechanism operates. The newly created block
has one input and two outputs, as expected.

Figure 2. Equivalent Activate model after aggregation of Mod-
elica components.

The Modelica code corresponding to the Modelica
part is generated automatically by Activate and sent to
the Modelica compiler for compilation. The Modelica
compiler then generates a corresponding FMU, which re-
places the Modelica part as shown in Figure 3. This step
is of course again transparent to the user and is presented
here as an illustration. Interested readers are referred to
(Nikoukhah, 2017) for more details.

Figure 3. Resulting regular Activate model with Modelica
parts replaced by an FMU block.

The compiling process requires that any Modelica
model can be converted into FMU. The current FMI stan-
dard allows this conversion for many situations but in
some cases an extension of this standard would be use-
ful.

Compiling complex Modelica models, in particular
mechanical models, very often results in high index
DAEs or sometime ODEs and DAEs with constraints.
Keeping the constraints and making sure they are satis-
fied is important to avoid drift in the solution. In the cur-
rent FMI specification, only ODEs are supported. Acti-
vate currently supports, ODEs, index 1 DAEs, and ODEs
with constraints. But these solvers cannot be used for
the Modelica extension since the FMI does not support
DAEs and ODEs with constraints.1

Consider the overdetermined system:

ẋ = f (x) x(t0) = x0 (1a)
0 = φ(x), (1b)

The constraint (1b) is supposed to be consistent with the
ODE (1a) in the sense that the solution of this ODE satis-
fies (1b). So theoretically, Constraint (1b) is redundant.
However for numerical simulation, it provides valuable
information that can be used by the solver to reduce nu-
merical errors. This can be done by keeping φ(x) close
to zero.

Such constraints may be available in different sce-
narios. For example in a conservative physical system,
where the total energy is conserved, the conservation of
energy may be expressed as such a constraint. But the
scenario that is of particular interest here is when the
ODE (1a) is obtained by differentiating algebraic equa-
tions such as (1b). This is done when the original system
is a DAE. The algebraic equations are differentiated until
an ODE is obtained so that an ODE solver can be used
for simulation. In such cases ignoring the original alge-
braic constraints results often in unacceptable drift in the
numerical solution of the system.

1 The DAE support is currently being considered in FMI design
meetings for next releases of FMI.

In the current FMI 2.0 standard, which supports
only ODEs, a way to impose the constraint and avoid
drift in the solution is to trigger step-events. At solver
steps, i.e., at fmi2CompletedIntegrationStep
calls, the constraint can be checked, and if the er-
ror is found to be larger than some user defined
tolerance, a coordinate projection method (will be
discussed in 2.3) can be performed bringing back the
state of the system on the constraint manifold. Then
fmi2CompletedIntegrationStep should report
a step-event, i.e., enterEventMode=fmi2True.
The simulator treats the step-event and the FMU re-
ports a change in the value of continuous-time states,
i.e., valuesOfContinuousStatesChanged=
fmi2True. A change in the value of continuous-time
states usually requires restarting the numerical solver
(specially multi-step solvers) with smaller step-sizes
and lower order methods which slows down the simu-
lation. This way of treating constraints works but due
to large number of step events, the use of multi-step
solvers and in some extends single-step solvers becomes
uneconomical.

We have extended the current FMI APIs to pro-
vide functionalities to take into account the system con-
straints. This information can be used by Activate or
any importing tool to correct the solution so that the con-
straints are satisfied.

In the following sections, first high index DAE and the
coordinate projection method will be discussed. Then
our extension of the FMI standard to avoid drift and ob-
tain fast simulation will be discussed. Finally, two test
examples to illustrate the advantages of this FMI exten-
sion will be presented.

2 DAE Description

DAE systems arise in many applications such as con-
strained mechanical systems. One attribute of DAE sys-
tems is the differentiation index of the system, which can
be defined as the number of differentiations of each equa-
tion necessary to convert the system into an ODE system.
For the sake of simplicity, in this paper, index is used in-
stead of differentiation index. ODE can be considered as
an index 0 DAE. Further information on DAEs, and nu-
merical methods for DAEs, can be found in (Ascher and
Petzold, 1988) and (Hairer and Wanner, 1996).

2.1 index 1 DAE case:

As an example, consider the following system

ẋ = f (x,y) (2a)
0 = g(x,y), (2b)

Differentiation of (2b) once gives:

ẋ
∂g
∂x

+ ẏ
∂g
∂y

= 0 (3)

If ∂g
∂y is not singular, then (2) with (3) can be used to

compute the values of ẋ and ẏ. Hence we now have an
ODE system. Equation (2) is an index 1 DAE, because
one differentiation yields an ODE. This process (of dif-
ferentiation to obtain an ODE system from a DAE sys-
tem) is called index-reduction (Pantelides, 1988).

Index 1 systems can be treated in this way, but this
introduces a constraint (i.e., g(x,y) = 0) that will not
be taken into account when using a standard numerical
ODE solver.

An alternative approach for index 1 problems is to
treat the original system as-is, using the equation (2a) to
solve for ẋ , and treating y as a purely algebraic variable,
to be solved using the equation (2b). Solution of this
system requires modifications to standard ODE solvers
to accommodate the algebraic variables. Ideally these
variables should have some error control measures ap-
plied that is similar in effect to the error control on ẏ of
the index reduced system. Advantages of the direct ap-
proach are twofold. No unnecessary state y is introduced.
Fewer constraints is always better, both making the error
through constraint handling smaller, and in this case re-
moving the need for constraint handling altogether. But
this method needs the numerical integrator to be modi-
fied to accommodate error control on algebraic variables.
There are also standard DAE solvers such as DASSL,
IDA2, or RADAU-IIA3 that can take the equation (2) as
input and solve it over time. In these DAE solvers, con-
sistent initial values of x and y are provided by the user.
Some solvers can help the user to initialize the DAE by
solving the initialization equation. In this case, the user
should indicate which variable are differential and which
are algebraic.

There is also an alternative approach which is usually
used for FMU export. In this approach the y variable is
left as an internal variable, and only the x is exposed.
This has the advantage that an FMU constructed in this
way can be used directly with an ODE solver. In our
extension of the FMI specification for handling of alge-
braic variables, the algebraic section can be safely ig-
nored, and a pure ODE solver can be used for the FMU.

2.2 Higher index DAE case:

For higher index systems, constraints cannot be avoided,
even if only performing index-reduction to make the sys-
tem index 1 DAE or ODE, so a mechanism for handling
constraints is required. As an example, consider the unit

2https://computation.llnl.gov/projects/
sundials/ida

3https://www.unige.ch/~hairer/software.html

length planar pendulum in Cartesian coordinates, which
can be expressed by the following equations: ẍ = Fx

ÿ = Fy−g
0 = x2 + y2−1

(4)

One differentiation of the constraint in x, y gives:

0 = 2xẋ+2yẏ

And a second differentiation gives:

0 = 2xẍ+2yÿ+2ẋ2 +2ẏ2

which after replacing ẍ and ÿ from (4) and simplification
we get:

0 = 2Fx2 +2Fy2−2yg+2ẋ2 +2ẏ2

which gives
F = yg− (ẋ2 + ẏ2). (5)

In order to fully index reduce this model, one further dif-
ferentiation of (5) would be needed to obtain an equation
that can be used to get Ḟ as a function of other states, so
this problem is an index 3 system.

Leaving F in algebraic form, i.e., keeping (5) in the
system, instead of its derivative) gives us the following
system of equations F = yg− (ẋ2 + ẏ2)

ẍ = Fx
ÿ = Fy−g

(6)

where x, y, ẋ, ẏ are differential states and F is the alge-
braic variable. The two hidden constraints on the states
are: {

0 = x2 + y2−1
0 = 2xẋ+2yẏ (7)

In order to solve such a system with constraints, various
approaches are possible:

• Simply treat the ODE and index 1 portion of the
system ignoring the hidden constraints. Problem:
Over time the solution will drift away from the con-
straints giving an inaccurate or even non-physical
solution for the model.

• Use Baumgarte constraint stabilization (Baum-
garte, 1972), by adding correcting terms to the
ODEs. Problem: This can only reduce (not elim-
inate) the drift for the problem. Furthermore, the
parameter values for Baumgarte are not known in
advance.

• High index DAEs may also be handled with
FMI in some special cases. For example, if
the FMU is exported from a Modelica model

https://computation.llnl.gov/projects/sundials/ida
https://computation.llnl.gov/projects/sundials/ida
https://www.unige.ch/~hairer/software.html

and the modeler has enough knowledge about the
states of the model, by using stateSelect =
StateSelect.always in an appropriate way, it
is possible to transform the Modelica model to
ODE and export it as FMU. There are several
drawbacks. First, the user needs to have a good
knowledge about the model to provide appropri-
ate stateSelection. Also, nonlinear algebraic
equations might need to be solved inside the FMU.
Furthermore, the static selection of states might not
valid over the whole simulation run and dynamic
state selection may be required. With the dynamic
dummy derivative method (Mattsson and Soder-
lind, 1993), it is possible to transform to an ODE
and export the Modelica model as FMU. During
simulation, step events might be used to hold in-
tegration and switch to a new set of states that is
numerically more appropriate (S.E. Mattsson and
Elmqvist, 2000).

• Pantelides index reduction and dummy deriva-
tives algorithms (Pantelides, 1988) , (Mattsson and
Soderlind, 1993), (S.E. Mattsson and Elmqvist,
2000), usually reduce the DAE index to zero or
one. Hence, another solution would be enriching
the FMI standard to support directly index 1 DAEs.
Then, index reduction methods can be used to re-
duce the DAE index to one and exporting it to FMI
(Otter and Elmqvist, 2017). One of drawbacks of
this method is the lack of backward compatibility,
i.e., the FMUs exported in this way can no longer
be simulated with FMI-2.0 compatible simulators.

• Another solution is simulating the ODE part of the
system using an ODE integrator, but project back
the solution onto the constraint manifold after each
time step. After completion of each integrator step,
the required projection is computed, and if its norm
is large enough, it is applied to the solution so that
the constraints are satisfied. In this method, moni-
toring the magnitude of the projection and integrate
it into the error control mechanism is required. We
chose this solution to implement our FMI export
which requires adding a few new APIs for handling
constraints and projection. This method will be ex-
plained in the rest of this paper.

2.3 Coordinate projection
The key idea to reduce or avoid drift is to project the so-
lution points found by the numerical solver of the index 1
DAE or ODE system back on the manifold defined by the
original system. Consider the ODE with constraints (1).
The coordinate projection method essentially consists of
two steps for each integration step.

1. Suppose that xn−1 is a point consistent with the
original system (1). Using xn−1 as the initial value,

the ODE numerical solver takes a step applying
some numerical integration method on the equation
(1a), and gets the point x̃n at tn.

2. The solution point x̃n, computed by the ODE solver,
is then projected orthogonally back onto the man-
ifold (1b) given by constraints, i.e., the projected
solution is computed as the solution of (8){

‖xn− x̃n‖2 = minimize
xn

φ(xn) = 0
(8)

which is a nonlinear constrained least squares prob-
lem. The projection gives the orthogonal projection
to the manifold to get the next point xn. The pro-
jected value xn is then used to advance the solution
for the next step (Eich-Soellner and Fuhrer, 1998).

In (Shampine, 1986), (Gear, 1986), (Ascher et al.,
1994), (Ascher and Petzold, 1992), and (Hairer and Wan-
ner, 1996) the coordinate projection was discussed for
one-step methods such as Runge-Kutta methods. In case
of BDF-methods or, more generally, multi-step meth-
ods, the projection is more complex, since the correction
computed by the projection method should enter into the
error equation (Eich, 1993).

3 Implementation of ODE with con-
straint in FMI

Applying the index-reduction algorithm (Pantelides,
1988) to a high index DAE to convert it to an ODE, in-
troduces hidden constraints. In this paper we assume that
the index reduction algorithm reduces the index to one or
zero (ODE). In case of index 1 DAE, the algebraic vari-
ables are treated as local variable in the FMU which are
computed as a function of continuous-time states, so they
can be ignored. As a result, we will consider only ODE
with constraint case, i.e., the equation set (1).

The projection process simply computes the changes
required for each state variable so that the current values
of the system lie on the constraint manifold. Ideally this
should be computed as the minimum (or near minimum)
change to accomplish this, as the constraint problem is
typically under-determined, so many solutions are possi-
ble.

For error-controlled integrators, the change required
to move the solution back to the constraint manifold can
be integrated into the error control mechanism, so if too
large a change is needed, the step can be rejected, and
step with a smaller step size can be attempted.

When a high index DAE or an ODE with constraint
is exported as FMU, the importer tool needs to know
the number of constraints present in the FMU. We
have used the attribute maxNumberOfConstraints
in fmi://ModelDescription.xml element to indicate the

maximum number of constraints in a model. The default
value is zero to keep the FMU backward compatible.

If maxNumberOfConstraints is non zero then
the FMU should define one or more of the following API
functions (depending on the capability flags defined be-
low). .

• fmi2Status fmi2Constraint(
fmi2Component c, fmi2Real C[])

It computes the residual values for all
constraints in the FMU. Argument C is
maxNumberOfConstraints in length. When
the solution is on the manifold of the constraint,
the norm of the C vector is zero or nearly zero.

• fmi2Status fmi2ConstraintJacobian(
fmi2Component c, fmi2Real J[])

It computes the Jacobian for all residual val-
ues for all constraints in the FMU with re-
spect to state variables. The length of the
array J is maxNumberOfConstraints x
numberOfContinuousStates, and the Ja-
cobian matrix data is storage in row-major. Note
that in many cases the constraint Jacobian can
become rank-deficient even at non-event points
(e.g. bifurcation points in mechanical systems), so
caution must be used in using these functions for
projection.

The use of fmi2Constraint and
fmi2ConstraintJacobian provides the
master with complete control over the projection
process, so one can implement his own scaling
method or apply a different solution technique than
least squared. In our implementation in Activate,
since only one FMU is being used for the Modelica
part, the fmi2ConstraintJacobian is suffi-
cient, but in case of multiple FMUs with constraint,
directional derivative of the constraint should be
used.

Note that fmi2ConstraintJacobian is of
no use unless fmi2Constraint is also de-
fined. If only fmi2Constraint is provided,
the Jacobian of the constraints can be computed
through numerical differentiation. Please note that
fmi2GetDirectionalDerivative can also
be used for our purpose, but some modifications in
the variables that can be used in the argument list of
this API, i.e., vKnown_ref and vUnknown_ref
would be required.

• fmi2Status fmi2ProjectionStep(
fmi2Component c, fmi2Real S[])

It provides the current local projection step for the
constraint residual minimization problem. Argu-
ment S is numberOfContinuousStates in
length. For example, in a very simple case, S, can

be computed as follows. First the Constraint vector
C and its Jacobian D are updated from the model.

fmi2Constraint(c,C)
fmi2ConstraintJacobian(c,D)

Then S is computed as the pseudo inverse of the
matrix D, i.e.,

S = (DT D)
−1

DTC

Note that this is just for illustration purposes and
here we have not considered variable scaling, or
cautious handling for rank deficiency. This function
returns fmi2Error if it is unable to compute the
step (for example, the above simplified algorithm
is used and DT D is singular), otherwise it returns
fmi2OK.

Interface fmi2ProjectionStep is also useful
when the master has to iterate on a system com-
posed of multiple FMUs with constraint. In such
as system it may not be possible to apply the pro-
jection once, because a projection might affect an
output of an FMU or when it depends on another
FMU’s inputs. So it may require some iterations.
Note that this is not an issue when only one FMU
has constraints, and there is no feedback mecha-
nism present for the FMU with constraints.

• fmi2Status fmi2Projection(
fmi2Component c, fmi2Real P[],
fmi2Real projectionTolerance,
size_t iterationLimit,
fmi2Boolean apply)

It provides a full projection of the current so-
lution back onto the constraint manifold. The
projection is applied to the current state un-
til the states satisfy the constraints to within
projectionTolerance or until we exceed
iterationLimit. The length of array P is
numberOfContinuousStates. The option
apply specifies if projection should be applied
to the FMU state. If apply=fmi2False then
this function will return only the difference for
the states. If apply=fmi2True then the pro-
jection will be performed and the internal state
of the FMU will be updated. The updated
states can be retrieved with a subsequent call to
fmi2GetContinuousStates. This function
returns fmi2Discard if it is unable to project
onto the manifold, otherwise it returns fmi2OK.
Note that this function returns fmi2Discard for
the failure case, so the numerical ODE solver can
go back and try to take a smaller step until get a suc-
cessful step and projection. In the fmi2Discard
case, the current state of the FMU is not altered,

even if called with apply=fmi2True. The fol-
lowing pseudo-code demonstrates a simple way
for implementation of fmi2Projection using
fmi2ProjectionStep.

c_copy = c
delta = infinity
niter = 0
while delta>Tol and niter<=iterationLimit do
if fmi2ProjectionStep(c,S) != fmi2OK then

return fmi2error
end
delta = |S|
Update states ’X’ in c: X = X+S
niter++
end while
P = (’X’ in c) - (’X’ in c_copy)
if not apply then

c = c_copy
end
if niter>iterationLimit then

return fmi2Error
end

Interface fmi2Projection is provided for ease-
of-use, but for a system with multiple DAE FMUs
it may be necessary to iterate this function at each
time step.

• fmi2Status fmi2GetNumberOfConstraints(
fmi2Component c, size_t *N)

The number of constraints in a model may change
during the simulation when the model configura-
tion changes due to a discrete event. We call
this kind of systems variable constraint systems.
Since in a variable constraint system, the num-
ber of (active) constraints can change, we have
used this API function to query the number of
constraints that are currently active. So in case
of variable constraint systems, the use of this
function together with fmi2Constraint and
fmi2ConstraintJacobian is necessary. If
this function returns zero, the model does not re-
quire coordinate projection. This may happen dur-
ing the simulation of a variable constraint system.

This function needs only be defined when
maxNumberOfConstraints is non zero. If
the current number of constraints is less than
maxNumberOfConstraints, say Ncon, then
only the first Ncon entries of constraints and rows
of the Jacobian matrix will be populated.

The following three capability flags are being used for
Model Exchange FMUs to indicate to the importing tool
which of the API functions are supported within the
FMU:

• providesProjection (Boolean): If true the
FMU computes projection via fmi2Projection inter-
face. The default value is false.

• providesProjectionStep (Boolean): If
true the FMU provides projection step vector via
fmi2ProjectionStep interface. The default
value is false.

• providesConstraints (Enumeration with
true, false, and withJacobian): If true
the FMU can compute the constraint resid-
ual via fmi2Constraint interface. If set to
withJacobian then additionally the FMU
can compute the constraint Jacobian via the
fmi2ConstraintJacobian interface.

3.1 Multiple FMU model

The extension to FMI should support the case where
several FMUs containing constraints are intercon-
nected such as in a System Structure Parameteriza-
tion (SSP)4 module. In multiple FMU case, the in-
ternal constraints of FMU may depend on FMU in-
puts which are outputs of other FMUs with constraints.
For multiple FMU case, fmi2Constraint and
fmi2ProjectionStep are quite useful. In order to
integrate such systems with multiple FMUs, after a com-
plete input/output update of FMUs at a given time and
given continuous-time state value, fmi2Constraint
or fmi2ProjectionStep functions can be called by
the solver to check and compute the required projection.

3.2 Backward compatibility

This extension in the FMI APIs does not introduce any
backward compatibility issue in the FMI standard. Any
importing tools will simply have to make sure they can
ignore the new capability flags. The exporting tools do
not have to generate the new features as the capability
flags are false by default. So if the importing tool can-
not take advantage of the new APIs such as constraints
and projections, they are ignored and only ODE is inte-
grated with the price of possible drifts in states.

3.3 Required numerical solvers

In order to take advantages of this extension, the im-
porting tool should include solvers that can support
overdetermined systems, in particular, ODEs coupled
with algebraic constraints. An example of such solver is
CPODES5. CPODES is a numerical integrator for solv-
ing ODE problems using coordinate projection. It is
based on the CVODES integrator which is part of the
DOE Sundials6 suite. CPODES is a multi-step integra-
tor providing variable order Adams (up to 12th order)

4https://modelica.github.io/ssp-standard.
org/

5https://simtk.org/projects/cpodes
6https://computation.llnl.gov/projects/

sundials

https://modelica.github.io/ssp-standard.org/
https://modelica.github.io/ssp-standard.org/
https://simtk.org/projects/cpodes
https://computation.llnl.gov/projects/sundials
https://computation.llnl.gov/projects/sundials

and BDF (up to 5th order) methods for non-stiff prob-
lems and BDF (up to 5th order) for stiff problems. It
uses CVODES to advance the ODE (2a), and then per-
forms coordinate projection back to the constraint mani-
fold (2b) to exactly solve the DAE (2). The projection is
also incorporated back into the error test where it permits
larger steps.

Other single-step solvers can also be modified to sup-
port the coordinate projection method. In Activate we
have modified the RADAU-IIA solver7 to apply projec-
tion computed by fmi2Projection.

4 Test cases

4.1 Pendulum model

The pendulum model explained in section 2.2 can be de-
fined with the following Modelica model.

model Pendulum_DAE
constant Real g=9.81;
constant Real L=1;
constant Real Ls=L*L;
Real x(start=L, fixed=true), y(start=0), Lambda ;
Real vx(start=0, fixed=true), vy(start=0);
Real drift, totalEnergy;

equation
der(x)=vx;
der(y)=vy;
der(vx)=Lambda*x;
der(vy)=Lambda*y-g;
x*x+y*y=Ls;
drift=x*x+y*y-Ls;
totalEnergy=(vx*vx+vy*vy)/2+g*y;

end Pendulum_DAE;

In this Modelica model, drift and totalEnergy
are output variables defining the drift in the pendulum
length and the total energy of the system, respectively. A
standard FMU can be generated for this Modelica model.
If the two constraints (7) are needed to be satisfied, the
FMU can be augmented with the following new APIs.

fmi2Status fmi2GetDerivatives(fmi2Component c,
fmi2Real derivatives[], size_t nx) {
double F, g=9.81;
ModelInstance* comp = (ModelInstance *)c;

x =comp->state[0];
y =comp->state[1];
xd=comp->state[2];
yd=comp->state[3];

F = y*g-(xd^2+yd^2);
derivatives[0]=xd;
derivatives[1]=yd;
derivatives[2]=F*x;
derivatives[3]=F*y-g;
return fmi2OK;

}

fmi2Status fmi2Constraint(fmi2Component c,
fmi2Real C[]) {

7https://www.unige.ch/~hairer/software.html

ModelInstance* comp = (ModelInstance *)c;
x =comp->state[0];
y =comp->state[1];
xd=comp->state[2];
yd=comp->state[3];

C[0]=x*x + y*y- 1;
C[1]=x*xd+ y*yd;

return fmi2OK;
}

fmi2Status fmi2Projection(fmi2Component
c, fmi2Real P[], fmi2Real projectionTolerance,

size_t iterationLimit, fmi2Boolean apply) {
ModelInstance* comp = (ModelInstance *)c;
double R;
x =comp->state[0];
y =comp->state[1];
xd=comp->state[2];
yd=comp->state[3];

R = sqrt(x*x+y*y);
P[0] = x/R - x;
P[1] = y/R - y;
P[2] = (xd*y*y- yd*x*y)/R/R - xd;
P[3] = (-xd*x*y+ yd*x*x)/R/R - yd;

If (apply){
comp->state[0] = x/R;
comp->state[1] = y/R;
comp->state[2] = (xd*y*y- yd*x*y)/R/R;
comp->state[3] = (-xd*x*y+ yd*x*x)/R/R;

}
return fmi2OK;

}

In the first test, the pendulum model is exported as a
standard FMU, i.e., exported as a pure ODE without con-
straints. The RadauII-A solver with error tolerance=1e-
4 is used. In Figure 4, the left plot displays the x and
y variables and the right plot is the drift variable.
drift is growing as time advances.

Then the same model is exported as an FMU with ad-
ditional constraints and projection APIs. As shown in
Figure 5, the drift in the solution is kept below the re-
quested error tolerance. Whenever the drift exceeds the
error tolerance, the projection is applied and the drift be-
comes zero.

In these tests, only constraints (7) have been consid-
ered. We need also to consider the energy conservation
law, i.e., the amount of total energy of the system should
not change. The energy constraint has not been consid-
ered in the Modelica model. So a drift in the total en-
ergy due to numerical errors may happen. In order to
check the total energy the simulation time is increased to
T=300 seconds. A drift in the energy with the value of
9e-3 is obtained. If we add the additional energy con-
straint to the FMU, i.e., adding the following constraint
to the FMU, we can keep the energy constraint valid.
C[2]= (xd*xd + yd*yd)/2+g*y
The result is given in Figure 6 where the left-hand plot

is the total energy of the pendulum with there is no en-
ergy constraint in the model and and the right side plot
is the amount of drift in the energy when the above ad-

https://www.unige.ch/~hairer/software.html

Figure 4. Simulation result of the Pendulum without constraints.

Figure 5. Simulation result of the Pendulum with constraints.

ditional constraint is applied. For this experiment, the
modified RADAU-IIA solver with ATOL=RTOL= 1e-5
and maximum step-size=0.1 has been used.

Although the drift in the constraints (middle figure) is
kept below the requested tolerance, the amplitude of the
y variable as well as the total energy of the system is
decreased. This is due to lack of the energy constraint in
the original model.

4.2 Li-Ion Battery model
The second model (taken from the MapleSoft’s Battery
Library) represents an electric vehicle, powered by a bat-
tery stack consisting of 99 Li-ion cells wired in series.
The model features battery temperature changes while
the vehicle is controlled to follow an EPA highway drive
cycle, defined in a lookup table. LiFePO4 is used as the
cathode material to provide good thermal stability. The
model, as shown in Figure 7 is developed in Activate us-
ing Modelica components. This example was one of the

motivation to handle the constraints efficiently.
This model contains a constraint that should be

monitored to keep it near zero during the sim-
ulation. In order to ensure that the constraint
stays near zero, in the standard FMI, on every
fmi2CompletedIntegrationStep call, the con-
straint is checked, if exceeds the error tolerance, the nu-
merical solver is restarted which, as explained in section
1, slows down the simulation. After the development of
the new extension of FMI in in the MapleSim Modelica
compiler and in Activate, we were able to simulate this
model in a few seconds compared to hours. The simula-
tion result is given in Figure 8.

5 Conclusion

In order to simulate Modelica components in Activate,
they are regrouped and exported into an FMU. Since,
in the current FMI standard only ODE is supported, the

Figure 6. Drift in the total energy of the pendulum: with considering the energy constraint (right) and without considering the
energy constraint (left).

Modelica models, even high index ones, are converted
into ODE to be exportable into FMU. Due to conver-
sion of high index DAEs to ODE, some constraints in
the DAE may be ignored and that may cause the solu-
tion drift off the constraints. In this paper we have pre-
sented the way the FMI standard can be extended in a
backward compatible way to to deal with systems whose
states should satisfy hidden constraints on its continuous-
time states, such as constraints resulting from DAE in-
dex reduction of mass or energy conservation. In this
extension, after applying the index reduction method to
high index DAE, an ODE with constraints is obtained.
The resulting ODE is simulated using standard ODE in-
tegrators, but the solution is projected back onto the con-
straints after each time step. In other words, after com-
pletion of each integrator step of the ODE numerical
solver, the required projection to bring back the solution
on the constraints is computed, and if its norm is large
enough, it is applied to the solution so that the constraints
are satisfied. The new extension of FMI has been imple-
mented in Activate and two examples are illustrated in
this paper.

6 Acknowledgement

This work has been done with close collaboration with
MapleSimTM development team who provides the Mod-
elica compiler of Activate.

References
U. Ascher and L. Petzold. Computer methods for ordinary

differential equations and differential-algebraic equations.
SIAM, 1988.

U. M. Ascher and L. R. Petzold. Projected implicit runge-

kutta methods for differential-algebraic equations. SIAM,
Numerical Analysis, 28(4), 1097-1120., 1992.

U. M. Ascher, H. Chin, and S. Reich. Stabilization of daes and
invariant manifolds. Numer. Math. 67: 131, 1994.

J. Baumgarte. Stabilization of constraints and integrals of mo-
tion in dynamical systems. Computer Methods in Applied
Mechanics and Engineering Volume 1, Issue 1, Pages 1-16,
1972.

E. Eich. Convergence results for a coordinate projection
method applied to mechanical systems with algebraic con-
straints. SIAM J. on Numerical Analysis 30(5):1467-1482,
1993.

E. Eich-Soellner and C. Fuhrer. Numerical Methods in Multi-
body Dynamics. European Consortium for Mathematics in
Industry, B.G. Teubner, 1998.

C.W. Gear. Maintaining solution invariants in the numerical
solution of odes. Journal on Scientific and Statistical Com-
puting, Vol. 7, No. 3, 1986.

E. Hairer and G. Wanner. Solving Ordinary Differential Equa-
tions II: Stiff and Differential-Algebraic Problems. Springer,
1996.

S.E. Mattsson and G. Soderlind. Index reduction in
differential-algebraic equations using dummy derivatives.
SIAM Journal of Scientific Computing. 14(3), pp. 677-692,
1993.

R. Nikoukhah. A simulation environment for efficiently mix-
ing signal blocks and modelica components. 12’th Interna-
tional Modelica conference, 2017.

M. Otter and H. Elmqvist. Transformation of differential al-
gebraic array equations to index one form. Proceedings of
the 12th International Modelica Conference, Prag, Czech
Republic, 2017.

Figure 7. Battery Electric Vehicle model

C. C. Pantelides. The consistent initialization of differential-
algebraic systems. SIAM Journal on Scientific and Statisti-
cal Computing, 9(2):213–231, 1988. doi:10.1137/0909014.

H. Olsson S.E. Mattsson and H. Elmqvist. Dynamic selection
of states in dymola. Modelica Workshop 2000, Lund, Swe-
den, pp. 61-67, 2000.

L. Shampine. Conservation laws and the numerical solution
of odes,. Comput. Math. Appls, Part B., 12, pp. 1287-1296,
1986.

Figure 8. State of charge of the battery

http://dx.doi.org/10.1137/0909014

	Introduction
	DAE Description
	index 1 DAE case:
	Higher index DAE case:
	Coordinate projection

	Implementation of ODE with constraint in FMI
	Multiple FMU model
	Backward compatibility
	Required numerical solvers

	Test cases
	Pendulum model
	Li-Ion Battery model

	Conclusion
	Acknowledgement

