FunctionAdvisor/DE
return the differential equation form of a given mathematical function
Calling Sequence
Parameters
Description
Examples
FunctionAdvisor(DE, math_function, var)
DE
-
name where DE is one of the literal names 'DE', 'ODE', or 'PDE'
math_function
Maple name of mathematical function
var
optional, a list of independent variable(s) or the main dependent variable
The FunctionAdvisor(DE, math_function) command returns an all polynomial differential equation system satisfied by the function, when it exists.
A differential equation system is polynomial when it is polynomial in the independent variables, unknown functions, and its derivatives. For more information, see dpolyform.
FunctionAdvisor⁡DE,GaussAGM
f⁡x,y=GaussAGM⁡x,y,∂3∂y3f⁡x,y=6⁢∂∂yf⁡x,yf⁡x,y+−x4+9⁢x2⁢y2−8⁢y4y⁢−y+x2⁢x+y2⁢∂2∂y2f⁡x,y−6⁢∂∂yf⁡x,y3f⁡x,y2+2⁢x4−18⁢x2⁢y2+16⁢y4⁢∂∂yf⁡x,y2y⁢−y+x2⁢x+y2⁢f⁡x,y+x4+6⁢x2⁢y2−13⁢y4⁢∂∂yf⁡x,yy2⁢−y+x2⁢x+y2+3⁢y⁢f⁡x,y−y+x2⁢x+y2,∂∂xf⁡x,y=−y⁢∂∂yf⁡x,yx+f⁡x,yx
FunctionAdvisor⁡ODE,KelvinBei
f⁡z=KelvinBei⁡a,z,ⅆ4ⅆz4f⁡z=−2⁢ⅆ3ⅆz3f⁡zz+2⁢a2+1⁢ⅆ2ⅆz2f⁡zz2+−2⁢a2−1⁢ⅆⅆzf⁡zz3+−a4−z4+4⁢a2⁢f⁡zz4
Note that 'ODE' and 'PDE' are synonyms for 'DE'.
The variables used by the FunctionAdvisor command to create the calling sequence are local variables. Therefore, the previous examples does not depend on z.
depends⁡,z
false
To make the FunctionAdvisor command return results using global variables, pass the actual function call instead of the function name. In this case, for some special functions it is also necessary to indicate which variables are the "differential equation independent variables". For examples, consider the following.
FunctionAdvisor⁡ODE,KelvinBei⁡a,z,z
FunctionAdvisor⁡DE,JacobiTheta1⁡a,z
f⁡a,z=JacobiTheta1⁡a,z,∂2∂a2f⁡a,z=−4⁢∂∂zf⁡a,z⁢z
depends⁡,a,depends⁡,z
true,true
Moreover, in the case of the DE topic, the arguments in the function call need not be a name, in which case the differential equation system for the composed function call given is computed. Compare the differential equation for JacobiTheta1 above and this other one taking 1ln⁡z as argument
JacobiTheta1⁡a,1ln⁡z
FunctionAdvisor⁡DE,,a,z
f⁡a,z=JacobiTheta1⁡a,1ln⁡z,∂3∂a2∂zf⁡a,z=∂2∂z2f⁡a,z∂∂zf⁡a,z+1z⁢∂2∂a2f⁡a,z+4⁢∂∂zf⁡a,z,∂3∂a3f⁡a,z=∂2∂a2f⁡a,z⁢∂2∂a∂zf⁡a,z∂∂zf⁡a,z
Apart from optionally passing a list of independent variables, one can pass the dependent variable directly (it includes the information on the independent variables):
FunctionAdvisor⁡DE,,g⁡a,z
g⁡a,z=JacobiTheta1⁡a,1ln⁡z,∂3∂a2∂zg⁡a,z=∂2∂z2g⁡a,z∂∂zg⁡a,z+1z⁢∂2∂a2g⁡a,z+4⁢∂∂zg⁡a,z,∂3∂a3g⁡a,z=∂2∂a2g⁡a,z⁢∂2∂a∂zg⁡a,z∂∂zg⁡a,z
See Also
depends
FunctionAdvisor
FunctionAdvisor/differentiation_rule
FunctionAdvisor/topics
PDEtools/dpolyform
Download Help Document