FunctionAdvisor
provide information on mathematical functions in general
Calling Sequence
Parameters
Description
Examples
References
Compatibility
FunctionAdvisor()
FunctionAdvisor(topics, quiet)
FunctionAdvisor(Topic, function, quiet, opts)
topics
-
literal name; 'topics'; specify that the FunctionAdvisor command return the topics for which information is available
quiet
(optional) literal name; 'quiet'; specify that only the computational result in Maple syntax is returned
Topic
(optional) name; FunctionAdvisor topic
function
name; mathematical function or function class. For some topics, you can specify multiple mathematical functions
opts
(optional) topic-specific options
The FunctionAdvisor() command returns basic instructions for the use of the FunctionAdvisor function.
The FunctionAdvisor(topics) command returns the list of available FunctionAdvisor topics.
The FunctionAdvisor(function) command returns a summary of information related to the function function.
The FunctionAdvisor(Topic, function) command returns information related to the topic Topic for the function function.
The requirement concerning mathematical functions is not just computational. Typically, you need supporting information on definitions, identities, possible simplifications, integral forms, different types of series expansions, and mathematical properties in general. This information is in handbooks of mathematical functions like the one by Abramowitz and Stegun. You can now access this information directly from Maple, using the routines in the MathematicalFunctions package and the FunctionAdvisor command. This command is particularly useful when studying, teaching, and solving problems where mathematical function properties are relevant.
Using the FunctionAdvisor command, you can access mathematical language information easily that is both readable and directly usable in Maple mathematical computations. The FunctionAdvisor command provides information on the following topics.
analytic_extension
asymptotic_expansion
branch_cuts
branch_points
calling_sequence
class_members
classify_function
DE
definition
describe
differentiation_rule
display
function_classes
identities
integral_form
known_functions
plot
relate
series
singularities
special_values
specialize
sum_form
synonyms
table
The FunctionAdvisor command provides information on the following mathematical functions.
abs
AiryAi
AiryBi
AngerJ
AppellF1
AppellF2
AppellF3
AppellF4
arccos
arccosh
arccot
arccoth
arccsc
arccsch
arcsec
arcsech
arcsin
arcsinh
arctan
arctanh
argument
BellB
bernoulli
BesselI
BesselJ
BesselK
BesselY
Beta
binomial
ChebyshevT
ChebyshevU
Chi
Ci
CompleteBellB
cos
cosh
cot
coth
CoulombF
csc
csch
csgn
CylinderD
CylinderU
CylinderV
dawson
dilog
Dirac
doublefactorial
Ei
EllipticCE
EllipticCK
EllipticCPi
EllipticE
EllipticF
EllipticK
EllipticModulus
EllipticNome
EllipticPi
erf
erfc
erfi
euler
exp
factorial
FresnelC
Fresnelf
Fresnelg
FresnelS
GAMMA
GaussAGM
GegenbauerC
HankelH1
HankelH2
harmonic
Heaviside
HermiteH
HeunB
HeunBPrime
HeunC
HeunCPrime
HeunD
HeunDPrime
HeunG
HeunGPrime
HeunT
HeunTPrime
hypergeom
Hypergeom
Im
IncompleteBellB
InverseJacobiAM
InverseJacobiCD
InverseJacobiCN
InverseJacobiCS
InverseJacobiDC
InverseJacobiDN
InverseJacobiDS
InverseJacobiNC
InverseJacobiND
InverseJacobiNS
InverseJacobiSC
InverseJacobiSD
InverseJacobiSN
JacobiAM
JacobiCD
JacobiCN
JacobiCS
JacobiDC
JacobiDN
JacobiDS
JacobiNC
JacobiND
JacobiNS
JacobiP
JacobiSC
JacobiSD
JacobiSN
JacobiTheta1
JacobiTheta2
JacobiTheta3
JacobiTheta4
JacobiZeta
KelvinBei
KelvinBer
KelvinHei
KelvinHer
KelvinKei
KelvinKer
KummerM
KummerU
LaguerreL
LambertW
LegendreP
LegendreQ
LerchPhi
Li
ln
lnGAMMA
log
LommelS1
LommelS2
MathieuA
MathieuB
MathieuC
MathieuCE
MathieuCEPrime
MathieuCPrime
MathieuExponent
MathieuFloquet
MathieuFloquetPrime
MathieuS
MathieuSE
MathieuSEPrime
MathieuSPrime
MeijerG
pochhammer
polylog
Psi
Re
sec
sech
Shi
Si
signum
sin
sinh
SphericalY
Ssi
Stirling1
Stirling2
StruveH
StruveL
tan
tanh
WeberE
WeierstrassP
WeierstrassPPrime
WeierstrassSigma
WeierstrassZeta
WhittakerM
WhittakerW
Wrightomega
Zeta
Like the conversion facility for mathematical functions, the FunctionAdvisor command also works with the concept of function classes and considers assumptions on the function parameters, if any. The FunctionAdvisor command provides information on the following function classes.
`0F1`
`1F1`
`2F1`
Airy
arctrig
arctrigh
Bessel_related
Chebyshev
Cylinder
Ei_related
elementary
Elliptic_doubly_periodic
Elliptic_related
erf_related
GAMMA_related
Hankel
hypergeometric
Jacobi_related
Kelvin
Kummer
Legendre
Lommel
orthogonal_polynomials
Other
Psi_related
Struve_related
trig
trigh
Weierstrass_related
Whittaker
Zeta_related
The FunctionAdvisor command can be considered to be between a help and a computational special function facility. Due to the wide range of information this command can handle and in order to facilitate its use, it includes two distinctive features:
If you call the FunctionAdvisor command without arguments, it returns information that you can follow until the appropriate information displays.
If you call the FunctionAdvisor command with a topic or function misspelled, but a match exists, it returns the information with a warning message.
So, you do not have to remember the exact Maple name of each mathematical function or the FunctionAdvisor topic. To avoid the warning messages displayed when the topic of function is misspelled, and the FunctionAdvisor verbosity in general, specify the optional argument quiet.
The following example uses the FunctionAdvisor command with no arguments specified.
FunctionAdvisor⁡
The usage is as follows: > FunctionAdvisor( topic, function, ... ); where 'topic' indicates the subject on which advice is required, 'function' is the name of a Maple function, and '...' represents possible additional input depending on the 'topic' chosen. To list the possible topics: > FunctionAdvisor( topics ); A short form usage, > FunctionAdvisor( function ); with just the name of the function is also available and displays a summary of information about the function.
FunctionAdvisor⁡topics
The topics on which information is available are:
DE,analytic_extension,asymptotic_expansion,branch_cuts,branch_points,calling_sequence,class_members,classify_function,definition,describe,differentiation_rule,function_classes,identities,integral_form,known_functions,periodicity,plot,relate,required_assumptions,series,singularities,special_values,specialize,sum_form,symmetries,synonyms,table
To avoid all FunctionAdvisor verbosity, specify the optional argument quiet.
FunctionAdvisor⁡function_classes,quiet
trig,trigh,arctrig,arctrigh,elementary,GAMMA_related,Psi_related,Kelvin,Airy,Hankel,Bessel_related,0F1,orthogonal_polynomials,Ei_related,erf_related,Kummer,Whittaker,Cylinder,1F1,Elliptic_related,Legendre,Chebyshev,2F1,Lommel,Struve_related,hypergeometric,Jacobi_related,InverseJacobi_related,Elliptic_doubly_periodic,Weierstrass_related,Zeta_related,complex_components,piecewise_related,Other,Bell,Heun,Appell,trigall,arctrigall,Polylog_related,integral_transforms
The FunctionAdvisor command can return information ranging from general information, for example, "the Maple names for the Bessel functions",
FunctionAdvisor⁡bess
* Partial match of "bess" against topic "Bessel_related". The 14 functions in the "Bessel_related" class are:
AiryAi,AiryBi,BesselI,BesselJ,BesselK,BesselY,HankelH1,HankelH2,KelvinBei,KelvinBer,KelvinHei,KelvinHer,KelvinKei,KelvinKer
FunctionAdvisor⁡describe,BesselK
BesselK=Modified Bessel function of the second kind
to more complicated relationships between mathematical functions and their identities, computed using the Maple internal knowledge database and related algorithms.
FunctionAdvisor⁡sum_form,tan
tan⁡z=∑_k1=1∞⁡bernoulli⁡2⁢_k1⁢−1_k1⁢z−1+2⁢_k1⁢4_k1−16_k1Γ⁡2⁢_k1+1,z<π2
FunctionAdvisor⁡integral_form,Β
Β⁡x,y=∫01_k1x−1⁢1−_k1y−1ⅆ_k1,0<ℜ⁡x∧0<ℜ⁡y
sp_eq≔FunctionAdvisor⁡specialize,HermiteH,KummerU
sp_eq≔HermiteH⁡a,z=2a⁢KummerU⁡−a2,12,z2,0<ℜ⁡z∨ℜ⁡z=0∧0<ℑ⁡z
If you only specify function names, the parameters entering the mathematical formulas are all local variables. For example, the previous formula uses local instances of a and z and therefore
has⁡sp_eq,a,z
false
You can override this behavior by passing the function with the parameters. For example, you can first retrieve the calling sequence then pass EllipticF⁡z,k.
FunctionAdvisor⁡syntax,EllipticF
EllipticF⁡z,k
EF_and_DE≔FunctionAdvisor⁡DE,EllipticF⁡z,k
EF_and_DE≔f⁡z,k=EllipticF⁡z,k,∂2∂k2f⁡z,k=−1−3⁢k4⁢z2+z2+3⁢k2⁢∂∂kf⁡z,kk5⁢z2+−z2−1⁢k3+k+z3−z⁢∂∂zf⁡z,kk4−k2⁢z2−k2+1+−k2⁢z2+1⁢f⁡z,kk4⁢z2−k2⁢z2−k2+1,∂2∂k∂zf⁡z,k=−∂∂zf⁡z,k⁢k⁢z2k2⁢z2−1,∂2∂z2f⁡z,k=−2⁢k2⁢z3+k2+1⁢z⁢∂∂zf⁡z,k1+k2⁢z4+−k2−1⁢z2
map2⁡has,EF_and_DE,z,k
true,true
The information returned by the FunctionAdvisor command can be used for further computations. For example, you can verify that the first operand EF_and_DE, that is, EllipticF, is a solution of the second operand, a PDE system, or further represent the function in differently.
pdetest⁡EF_and_DE1,EF_and_DE2
0,0,0
EF_and_DE1
f⁡z,k=EllipticF⁡z,k
convert⁡EF_and_DE1,Int
f⁡z,k=∫0z1−_α12+1⁢−k2⁢_α12+1ⅆ_α1
Use the FunctionAdvisor command to return a presentation with sections of information for the arccot function.
FunctionAdvisor⁡arccot,quiet:
arccot=inverse cotangent function
arccot⁡z=π2−I⁢ln⁡1−I⁢z−ln⁡1+I⁢z2
with no restrictions on ⁡z
classify function
symmetries
arccot⁡−z=π−arccot⁡z
arccot⁡z&conjugate0;=arccot⁡z&conjugate0;
notz∈ComplexRange⁡−∞⁢I,−Iorz∈ComplexRange⁡I,∞⁢I
periodicity
arccot⁡z
No periodicity
z=∞+∞⁢I
branch points
z∈−I,I
branch cuts
z∈ComplexRange⁡−∞⁢I,−I∨z∈ComplexRange⁡I,∞⁢I
special values
arccot⁡−1=3⁢π4
arccot⁡−33=2⁢π3
arccot⁡−3=5⁢π6
arccot⁡0=π2
arccot⁡3=π6
arccot⁡33=π3
arccot⁡1=π4
arccot⁡∞=0
arccot⁡−∞=π
cot⁡arccot⁡z=z
cot⁡arccot⁡z+arccot⁡y=y⁢z−1z+y
sum form
arccot⁡z=∑_k1=0∞⁡−z⁢I⁢z_k1+−I⁢z_k12⁢_k1+1+π2
z<1
series⁡arccot⁡z,z,4=π2−z+13⁢z3+O⁡z5
asymptotic expansion
asympt⁡arccot⁡z,z,4=1z−13⁢z3+O⁡1z5
integral form
arccot⁡z=∫1+I⁢z1−I⁢z−I2_k1ⅆ_k1+π2
differentiation rule
ⅆⅆzarccot⁡z=−1z2+1
ⅆnⅆznarccot⁡z=arccot⁡zn=0−2n−1⁢MeijerG⁡0,0,12,,0,−12+n2,n2,z2⁢z1−notherwise
f⁡z=arccot⁡z
ⅆⅆzf⁡z=−1z2+1
To obtain the same information but as a Maple table with indices and entries, sometimes useful for other computational purposes, pass the optional argument table. The relation between all elementary functions and the pFq hypergeometric function:
elementary_functions≔FunctionAdvisor⁡elementary
The 26 functions in the "elementary" class are:
elementary_functions≔arccos,arccosh,arccot,arccoth,arccsc,arccsch,arcsec,arcsech,arcsin,arcsinh,arctan,arctanh,cos,cosh,cot,coth,csc,csch,exp,ln,sec,sech,sin,sinh,tan,tanh
map2⁡FunctionAdvisor,relate,elementary_functions,hypergeom
arccos⁡z=π2−z⁢hypergeom⁡12,12,32,z2,arccosh⁡z=−−1+z2⁢z⁢hypergeom⁡12,12,32,z2−π2−1+z,arccot⁡z=π2−z⁢hypergeom⁡12,1,32,−z2,arccoth⁡z=z⁢hypergeom⁡12,1,32,z2+π⁢−z−122⁢z−1,arccsc⁡z=hypergeom⁡12,12,32,1z2z,arccsch⁡z=hypergeom⁡12,12,32,−1z2z,arcsec⁡z=π2−hypergeom⁡12,12,32,1z2z,arcsech⁡z=−z−12z2⁢z⁢π−2⁢hypergeom⁡12,12,32,1z22⁢z−1,arcsin⁡z=z⁢hypergeom⁡12,12,32,z2,arcsinh⁡z=z⁢hypergeom⁡12,12,32,−z2,arctan⁡z=z⁢hypergeom⁡12,1,32,−z2,arctanh⁡z=z⁢hypergeom⁡12,1,32,z2,cos⁡z=hypergeom⁡,12,−z24,cosh⁡z=hypergeom⁡,12,z24,cot⁡z=hypergeom⁡,12,−z24z⁢hypergeom⁡,32,−z24,coth⁡z=hypergeom⁡,12,z24z⁢hypergeom⁡,32,z24,csc⁡z=1z⁢hypergeom⁡,32,−z24,csch⁡z=1z⁢hypergeom⁡,32,z24,ⅇz=hypergeom⁡,,z,ln⁡z=z−1⁢hypergeom⁡1,1,2,−z+1,sec⁡z=1hypergeom⁡,12,−z24,sech⁡z=1hypergeom⁡,12,z24,sin⁡z=z⁢hypergeom⁡,32,−z24,sinh⁡z=z⁢hypergeom⁡,32,z24,tan⁡z=z⁢hypergeom⁡,32,−z24hypergeom⁡,12,−z24,tanh⁡z=z⁢hypergeom⁡,32,z24hypergeom⁡,12,z24
Cheb-Terrab, E.S. "The function wizard project: A Computer Algebra Handbook of Special Functions". Proceedings of the Maple Summer Workshop. University of Waterloo, Ontario, Canada, 2002.
The FunctionAdvisor command was updated in Maple 2016.
See Also
FunctionAdvisor/analytic_extension
FunctionAdvisor/asymptotic_expansion
FunctionAdvisor/branch_cuts
FunctionAdvisor/branch_points
FunctionAdvisor/calling_sequence
FunctionAdvisor/class_members
FunctionAdvisor/classify_function
FunctionAdvisor/DE
FunctionAdvisor/definition
FunctionAdvisor/describe
FunctionAdvisor/differentiation_rule
FunctionAdvisor/function_classes
FunctionAdvisor/identities
FunctionAdvisor/integral_form
FunctionAdvisor/known_functions
FunctionAdvisor/relate
FunctionAdvisor/series
FunctionAdvisor/singularities
FunctionAdvisor/special_values
FunctionAdvisor/specialize
FunctionAdvisor/sum_form
FunctionAdvisor/synonyms
MathematicalFunctions
Download Help Document