AppellF2 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


AppellF2

The AppellF2 function

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

AppellF2(a,b1,b2,c1,c2,z1,z2)

Parameters

a

-

algebraic expression

b1

-

algebraic expression

b2

-

algebraic expression

c1

-

algebraic expression

c2

-

algebraic expression

z1

-

algebraic expression

z2

-

algebraic expression

Description

• 

As is the case of all the four multi-parameter Appell functions, AppellF2, is a doubly hypergeometric function that includes as particular cases the 2F1 hypergeometric and some cases of the MeijerG function, and with them most of the known functions of mathematical physics. Among other situations, AppellF2 appears in the solution to differential equations in general relativity, quantum mechanics, and molecular and atomic physics.

  

Initialization: Set the display of special functions in output to typeset mathematical notation (textbook notation):

Typesetting:-EnableTypesetRuleTypesetting:-SpecialFunctionRules:

  

The definition of the AppellF2 series and the corresponding domain of convergence can be seen through the FunctionAdvisor

FunctionAdvisordefinition,AppellF2

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=_k1=0_k2=0a_k1+_k2b__1_k1b__2_k2z__1_k1z__2_k2c__1_k1c__2_k2_k1!_k2!&comma;z__1+z__2<1

(1)
  

A distinction is made between the AppellF2 doubly hypergeometric series, with the restricted domain of convergence shown above, and the AppellF2 function, that coincides with the series in its domain of convergence but also extends it analytically to the whole complex plane.

  

From the definition above, by swapping the AppellF2 variables subscripted with the numbers 1 and 2, the function remains the same; hence

FunctionAdvisorsymmetries&comma;AppellF2

F2a&comma;b__2&comma;b__1&comma;c__2&comma;c__1&comma;z__2&comma;z__1=F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2

(2)
  

From the series' definition, AppellF2 is singular (division by zero) when the c1 and/or c2 parameters entering the pochhammer functions in the denominator of the series are non-positive integers, because these pochhammer functions will be equal to zero when the summation index of the series is bigger than the absolute value of the corresponding c1 or c2 parameter.

  

For an analogous reason, when the a and/or both b1 and b2 parameters entering the pochhammer functions in the numerator of the series are non-positive integers, the series will truncate and AppellF2 will be polynomial. As is the case of the hypergeometric function, when the pochhammers in both the numerator and the denominator have non-positive integer arguments, AppellF2 is polynomial if the absolute value of the non-positive integers in the pochhammers of the numerator are smaller than or equal to the absolute value of the non-positive integer (parameters c1,c2) in the pochhammers in the denominator, and singular otherwise. Consult the FunctionAdvisor for comprehensive information on the combinations of all these conditions. For example, the singular cases happen when either the following conditions hold

FunctionAdvisorsingularities&comma;AppellF2

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2&comma;c__1::0&comma;a::¬0&comma;b__1::¬0&comma;c__1::0&comma;a::0&comma;b__1::¬0&comma;a<c__1c__1::0&comma;a::¬0&comma;b__1::0&comma;b__1<c__1c__1::0&comma;a::0&comma;b__1::0&comma;a<c__1b__1<c__1c__2::0&comma;a::¬0&comma;b__2::¬0&comma;c__2::0&comma;a::0&comma;b__2::¬0&comma;a<c__2c__2::0&comma;a::¬0&comma;b__2::0&comma;b__2<c__2c__2::0&comma;a::0&comma;b__2::0&comma;a<c__2b__2<c__2

(3)
  

The AppellF2 series is analytically extended to the AppellF2 function defined over the whole complex plane using identities and mainly by integral representations in terms of Eulerian integrals:

FunctionAdvisorintegral_form&comma;AppellF2

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=Γc__101ub__11F12a,b__2;c__2;z__2uz__111uc__1+b__1+1uz__1+1a&DifferentialD;uΓb__1Γc__1b__1&comma;z__110<b__10<c__1+b__1,F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=Γc__201ub__21F12a,b__1;c__1;z__1z__2u11u1+b__2c__2z__2u+1a&DifferentialD;uΓb__2Γc__2b__2&comma;z__210<b__20<c__2+b__2,F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=Γc__1Γc__20101ub__11vb__211uc__1+b__1+11v1+b__2c__2uz__1vz__2+1a&DifferentialD;u&DifferentialD;vΓb__1Γb__2Γc__1b__1Γc__2b__2&comma;0<b__10<b__20<c__1+b__10<c__2+b__2,F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=0ua1F11b__1;c__1;uz__1F11b__2;c__2;z__2u&ExponentialE;u&DifferentialD;uΓa&comma;z__1+z__2<10<a

(4)
  

These integral representations are also the starting point for the derivation of many of the identities known for AppellF2.

  

AppellF2 also satisfies a linear system of partial differential equations of second order

FunctionAdvisorDE&comma;AppellF2

fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2&comma;2z__12fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=z__22z__1z__2fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2z__11+ab__11z__1+c__1z__1fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2z__1z__11b__1z__2z__2fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2z__1z__11fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2ab__1z__1z__11&comma;2z__1z__2fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=1z__22z__22fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2z__1b__2z__1fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2z__2+ab__21z__2+c__2z__2fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2z__1z__2fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2ab__2z__1z__2

(5)

Examples

  

Initialization: Set the display of special functions in output to typeset mathematical notation (textbook notation):

Typesetting:-EnableTypesetRuleTypesetting:-SpecialFunctionRules&colon;

The conditions for both the singular and the polynomial cases can also be seen from the AppellF2. For example, the fourteen polynomial cases of AppellF2 are

AppellF2:-SpecialValues:-Polynomial

14,a&comma;b1&comma;b2&comma;c1&comma;c2&comma;z1&comma;z2a::0&comma;&comma;c1::¬0&comma;&comma;c2::¬0&comma;&comma;a::0&comma;&comma;c1::0&comma;&comma;c1a&comma;c2::¬0&comma;&comma;a::0&comma;&comma;c1::¬0&comma;&comma;c2::0&comma;&comma;c2a&comma;a::0&comma;&comma;c1::0&comma;&comma;c2::0&comma;&comma;c1a&comma;c2a&comma;b1::0&comma;&comma;b2::0&comma;&comma;c1::¬0&comma;&comma;c2::¬0&comma;&comma;b1::0&comma;&comma;b2::0&comma;&comma;c1::0&comma;&comma;c1b1&comma;c2::¬0&comma;&comma;b1::0&comma;&comma;b2::0&comma;&comma;c1::¬0&comma;&comma;c2::0&comma;&comma;c2b2&comma;b1::0&comma;&comma;b2::0&comma;&comma;c1::0&comma;&comma;c1b1&comma;c2::0&comma;&comma;c2b2&comma;b1::0&comma;&comma;c1::¬0&comma;&comma;c2::¬0&comma;&comma;b1::0&comma;&comma;c1::0&comma;&comma;c1b1&comma;c2::¬0&comma;&comma;b2::0&comma;&comma;c1::¬0&comma;&comma;c2::¬0&comma;&comma;b2::0&comma;&comma;c1::¬0&comma;&comma;c2::0&comma;&comma;c2b2&comma;a::0&comma;&comma;b1::0&comma;&comma;c1::0&comma;&comma;a<b1&comma;c1b1&comma;c2::0&comma;&comma;c2a&comma;a::0&comma;&comma;b2::0&comma;&comma;c1::0&comma;&comma;c1a&comma;c2::0&comma;&comma;a<b2&comma;c2b2

(6)

Likewise, the conditions for the singular cases of AppellF2 can be seen either using the FunctionAdvisor or entering AppellF2:-Singularities(), so with no arguments.

For particular values of its parameters, AppellF2 is related to the hypergeometric function. These hypergeometric cases are returned automatically. For example, for c1=b1,

%AppellF2=AppellF2a&comma;b__1&comma;b__2&comma;b__1&comma;c__2&comma;z__1&comma;z__2

F2a&comma;b__1&comma;b__2&comma;b__1&comma;c__2&comma;z__1&comma;z__2=1z__1aF12a,b__2;c__2;z__21z__1

(7)

To see all the hypergeometric cases, enter

FunctionAdvisorspecialize&comma;AppellF2&comma;hypergeom

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F12a,b__2;c__2;z__2&comma;z__1=0b__1=0,F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F12a,b__1;c__1;z__1&comma;z__2=0b__2=0,F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F12a,b__2;c__2;z__21z__11z__1a&comma;c__1=b__1z__11,F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F12a,b__1;c__1;z__11z__21z__2a&comma;c__2=b__2z__21,F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F34a2,12+a2,b__22+b__12,b__22+b__12+12;12+b__1,b__2+12,b__2+b__1;z__12&comma;c__1=2b__1c__2=2b__2z__2=z__1,F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F34b__1,a2,c__1b__1,12+a2;c__1,c__12,c__12+12;z__12&comma;b__2=b__1c__2=c__1z__2=z__1,F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F34a2,12+a2,c__12+12b__1,12c__12+b__1;12,c__12+12,32c__12;z__12a1c__1c__12b__1z__1F34a2+1,12+a2,1c__12+b__1,1+c__12b__1;32,2c__12,1+c__12;z__12c__12c__1&comma;b__2=1+b__1c__1c__2=2c__1z__2=z__1c__12b__1=1+b__2c__2c__1=2c__2z__2=z__1c__22

(8)

Other special values of AppellF2 can be seen using FunctionAdvisor(special_values, AppellF2).

By requesting the sum form of AppellF2, besides its double power series definition, we also see the particular form the series takes when one of the summations is performed and the result expressed in terms of 2F1 hypergeometric functions:

FunctionAdvisorsum_form&comma;AppellF2

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=m=0n=0am+nb__1mb__2nz__1mz__2nc__1mc__2nm!n!&comma;z__2+z__1<1,F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=k=0akb__1kF12a+k,b__2;c__2;z__2z__1kc__1kk!&comma;z__2+z__1<1,F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=k=0akb__2kF12a+k,b__1;c__1;z__1z__2kc__2kk!&comma;z__2+z__1<1

(9)

As indicated in the formulas above, for AppellF2 (also for AppellF4), and unlike the case of AppellF1 and AppellF3, the domain of convergence with regards to the two variables z1 and z2 is entangled, i.e. it intrinsically depends on a combination of the two variables, so the hypergeometric coefficient in one variable in the single sum form does not extend the domain of convergence of the double sum but for particular cases, and from the formulas above one cannot conclude about the value of the function when one of z1 or z2 is equal to 1 unless the other one is exactly equal to 0.

AppellF2 admits identities analogous to Euler identities for the hypergeometric function. These Euler-type identities, as well as contiguity identities, are visible using the FunctionAdvisor with the option identities, or directly from the function. For example,

AppellF2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2 &equals; AppellF2:-TransformationsEuler1a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F2a&comma;c__1b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1z__11&comma;z__21z__11z__1a

(10)

Among other situations, this identity is useful when the sum of the absolute values of z1 and z2 is larger than 1 but the same sum constructed with the arguments in the same position of AppellF2 on the right-hand side is smaller than 1. On the other hand, unlike the case of the other three Appell functions, none of the two Euler type transformations or hypergeometric special cases of AppellF2 are of help to analytically extend to the whole complex plane the AppellF2 series when either z1=1 or z2=1.

A contiguity transformation for AppellF2

AppellF2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2 &equals; AppellF2:-TransformationsContiguity1a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=aF2a+1&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2+b__1F2a&comma;b__1+1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2+b__2F2a&comma;b__1&comma;b__2+1&comma;c__1&comma;c__2&comma;z__1&comma;z__2a+b__1+b__2

(11)

The contiguity transformations available in this way are

indicesAppellF2:-TransformationsContiguity

1,2,3,4,5,6,7,8

(12)

By using differential algebra techniques, the PDE system satisfied by AppellF2 can be transformed into an equivalent PDE system where one of the equations is a linear ODE in z2 parametrized by z1. In the case of AppellF2 this linear ODE is of fourth order and can be computed as follows

F2z__1&comma;z__2 &equals; AppellF2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2

F2z__1&comma;z__2=F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2

(13)

simplifyop1&comma; 2&comma; PDEtools:-casesplitPDEtools:-dpolyform&comma; no_Fn&comma; lex

4z__24F2z__1&comma;z__2=2a+2b__2c__1+8z__22+z__12b__2+z__12a+z__12c__2+b__1+5z__1+c__110z__22z__11c__2+1z__23z__23F2z__1&comma;z__2+b__22+4a+2c__19b__2a2+c__19a+4c__114z__22+z__1+2a+z__1+2c__2+b__12z__1c__1+4b__2z__12c__2+2a+b__13z__1c__1+6c__2+2b__14z__12c__1+8z__2+c__2z__11c__2+12z__22F2z__1&comma;z__22ac__1+2b__2+2a+1ac__1+2z__2+c__2z__12a+b__1+1z__1+c__12z__2F2z__1&comma;z__2+F2z__1&comma;z__2ab__2ac__1+1b__2+1z__22z__21z__2+z__11

(14)

This linear ODE has four regular singularities, one of which is depends on z1

DEtoolssingularitiessubsF2z__1&comma;z__2=F2z__2&comma;

regular=0&comma;1&comma;&comma;1z__1,irregular=

(15)

You can also see a general presentation of AppellF2, organized into sections and including plots, using the FunctionAdvisor

FunctionAdvisorAppellF2

AppellF2

describe

AppellF2=Appell 2-variable hypergeometric function F2

definition

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=_k1=0_k2=0a_k1+_k2b__1_k1b__2_k2z__1_k1z__2_k2c__1_k1c__2_k2_k1!_k2!

z__1+z__2<1

classify function

Appell

symmetries

F2a&comma;b__2&comma;b__1&comma;c__2&comma;c__1&comma;z__2&comma;z__1=F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2

plot

singularities

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2

c__1::0&comma;a::¬0&comma;b__1::¬0&comma;c__1::0&comma;a::0&comma;b__1::¬0&comma;a<c__1c__1::0&comma;a::¬0&comma;b__1::0&comma;b__1<c__1c__1::0&comma;a::0&comma;b__1::0&comma;a<c__1b__1<c__1c__2::0&comma;a::¬0&comma;b__2::¬0&comma;c__2::0&comma;a::0&comma;b__2::¬0&comma;a<c__2c__2::0&comma;a::¬0&comma;b__2::0&comma;b__2<c__2c__2::0&comma;a::0&comma;b__2::0&comma;a<c__2b__2<c__2

branch points

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2

a::¬0&comma;b__1::¬0&comma;z__11&comma;+Ia::¬0&comma;b__2::¬0&comma;z__21&comma;+I

branch cuts

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2

a::¬0&comma;b__1::¬0&comma;1<z__1a::¬0&comma;b__2::¬0&comma;1<z__2

special values

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=1

z__1=0z__2=0

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=1

a=0

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=1

b__1=0b__2=0

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F12a,b__2;c__2;z__2

z__1=0

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F12a,b__1;c__1;z__1

z__2=0

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F12a,b__2;c__2;z__2

b__1=0

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F12a,b__1;c__1;z__1

b__2=0

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=1z__1aF12a,b__2;c__2;z__21z__1

c__1=b__1z__11

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=1z__2aF12a,b__1;c__1;z__11z__2

c__2=b__2z__21

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F34a2,12+a2,b__22+b__12,b__22+b__12+12;b__2+b__1,12+b__1,b__2+12;z__12

c__1=2b__1c__2=2b__2z__2=z__1

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F34b__1,a2,c__1b__1,12+a2;c__1,c__12,c__12+12;z__12

b__2=b__1c__2=c__1z__2=z__1

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F34a2,12+a2,c__12+12b__1,12c__12+b__1;12,c__12+12,32c__12;z__12a1c__1c__12b__1z__1F34a2+1,12+a2,1c__12+b__1,1+c__12b__1;32,2c__12,1+c__12;z__12c__12c__1

b__2=1+b__1c__1c__2=2c__1z__2=z__1c__12

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F34a2,12+a2,c__22+12b__2,12c__22+b__2;12,c__22+12,32c__22;z__22a1c__2c__22b__2z__2F34a2+1,12+a2,1c__22+b__2,1+c__22b__2;32,2c__22,1+c__22;z__22c__22c__2

b__1=1+b__2c__2c__1=2c__2z__2=z__1c__22

identities

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F2a&comma;c__1b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__11+z__1&comma;z__21z__11z__1a

z__11a::0&comma;b__1::0&comma;b__2::0&comma;¬1<z__11<z__2

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F2a&comma;c__1b__1&comma;c__2b__2&comma;c__1&comma;c__2&comma;z__11+z__1+z__2&comma;z__21+z__1+z__21z__1z__2a

z__21z__1a::0&comma;b__1::0&comma;b__2::0&comma;¬1<z__11<z__2

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=aF2a+1&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2+b__1F2a&comma;b__1+1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2+b__2F2a&comma;b__1&comma;b__2+1&comma;c__1&comma;c__2&comma;z__1&comma;z__2b__2+b__1a

z__21z__11ab__2+b__1

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=b__1z__1k=0n1F2a+k+1&comma;b__1+1&comma;b__2&comma;c__1+1&comma;c__2&comma;z__1&comma;z__2c__1b__2z__2k=0n1F2a+k+1&comma;b__1&comma;b__2+1&comma;c__1&comma;c__2+1&comma;z__1&comma;z__2c__2+F2a+n&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2

c__10c__20

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F2a&comma;b__1+n&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2az__1k=1nF2a+1&comma;b__1+k&comma;b__2&comma;c__1+1&comma;c__2&comma;z__1&comma;z__2c__1

c__10

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F2a&comma;b__1&comma;b__2&comma;c__1n&comma;c__2&comma;z__1&comma;z__2ab__1z__1k=1nF2a+1&comma;b__1+1&comma;b__2&comma;c__1k+2&comma;c__2&comma;z__1&comma;z__2c__1kc__1k+1

c__1::¬+n<c__1

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=−1nanb__2nz__2nF2a+n&comma;b__1&comma;n+b__2&comma;c__1&comma;n+c__2&comma;z__1&comma;z__2c__2nc__21nk=1n−1knk1c__2kF2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2k&comma;z__1&comma;z__22c__2nk

c__2::¬n<c__2

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=b__1F2a&comma;b__1+1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__21+b__1c__1F2a&comma;b__1&comma;b__2&comma;1+c__1&comma;c__2&comma;z__1&comma;z__21+c__11+b__1c__1

c__111+b__1c__10

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F2a&comma;b__1+1&comma;b__2&comma;c__1+1&comma;c__2&comma;z__1&comma;z__2b__1c__1b__1c__1F2a&comma;b__1&comma;b__2&comma;c__1+1&comma;c__2&comma;z__1&comma;z__2c__1

c__10

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F2a&comma;b__1&comma;b__2&comma;c__1+1&comma;c__2&comma;z__1&comma;z__2+az__1F2a+1&comma;b__1&comma;b__2&comma;c__1+1&comma;c__2&comma;z__1&comma;z__2c__1+F2a+1&comma;b__1&comma;b__2&comma;c__1+2&comma;c__2&comma;z__1&comma;z__2ab__1c__11z__1c__1c__1+1

c__10c__1−1

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F1b__1&comma;b__2+a&comma;b__2&comma;c__1&comma;z__1&comma;z__11z__21z__2b__2

c__2=az__21

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F1b__2&comma;ab__1&comma;b__1&comma;c__2&comma;z__2&comma;z__21z__11z__1b__1

c__1=az__11

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=1+z__21+z__1+z__2b__2F3b__1&comma;b__2&comma;b__2+a&comma;c__1b__1&comma;c__1&comma;z__1&comma;z__11+z__1+z__21z__2b__2

c__2=az__21

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=1+z__11+z__1+z__2b__1F3b__2&comma;b__1&comma;ab__1&comma;c__2b__2&comma;c__2&comma;z__2&comma;z__21+z__1+z__21z__1b__1

c__1=az__11

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F4a&comma;b__1&comma;c__1&comma;c__2&comma;z__11z__2&comma;z__21z__1

a=c__1+c__21b__1=b__2

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F4a2&comma;12+a2&comma;12+b__1&comma;b__2+12&comma;z__122+z__1+z__22&comma;z__222+z__1+z__221z__12z__22a

c__1=2b__1c__2=2b__21z__12z__220

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=1+4z__2+81z__2+z__228z__2+8z__222aF4a&comma;b__1&comma;ab__1+1&comma;c__1&comma;4z__2+81z__2+z__228z__2+8z__22&comma;2z__14z__2+81z__2+z__228z__2+8z__22z__22+z__22z__221z__22z__22

b__2=ab__1+12c__2=2b__2z__212+z__221

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=1+4z__1+81z__1+z__128z__1+8z__122aF4a&comma;b__2&comma;ab__2+1&comma;c__2&comma;4z__1+81z__1+z__128z__1+8z__12&comma;2z__24z__1+81z__1+z__128z__1+8z__12z__12+z__12z__121z__12z__12

b__1=ab__2+12c__1=2b__1z__112+z__121

sum form

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=m=0n=0am+nb__1mb__2nz__1mz__2nc__1mc__2nm!n!

z__2+z__1<1

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=k=0akb__1kF12a+k,b__2;c__2;z__2z__1kc__1kk!

z__2+z__1<1

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=k=0akb__2kF12a+k,b__1;c__1;z__1z__2kc__2kk!

z__2+z__1<1

series

seriesF2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2&comma;z__1&comma;4=F12a,b__2;c__2;z__2+ab__1F12b__2,a+1;c__2;z__2c__1z__1+12ab__1a+1b__1+1F12b__2,a+2;c__2;z__2c__1c__1+1z__12+16ab__1a+1b__1+1a+2b__1+2F12b__2,a+3;c__2;z__2c__1c__1+1c__1+2z__13+Oz__14

seriesF2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2&comma;z__2&comma;4=F12a,b__1;c__1;z__1+ab__2F12b__1,a+1;c__1;z__1c__2z__2+12ab__2a+1b__2+1F12b__1,a+2;c__1;z__1c__2c__2+1z__22+16ab__2a+1b__2+1a+2b__2+2F12b__1,a+3;c__1;z__1c__2c__2+1c__2+2z__23+Oz__24

integral form

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=Γc__101ub__11F12a,b__2;c__2;z__2uz__111uc__1+b__1+1uz__1+1a&DifferentialD;uΓb__1Γc__1b__1

z__110<b__10<c__1+b__1

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=Γc__201ub__21F12a,b__1;c__1;z__1uz__211u1+b__2c__2uz__2+1a&DifferentialD;uΓb__2Γc__2b__2

z__210<b__20<c__2+b__2

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=Γc__1Γc__20101ub__11vb__211uc__1+b__1+11v1+b__2c__2uz__1vz__2+1a&DifferentialD;u&DifferentialD;vΓb__1Γb__2Γc__1b__1Γc__2b__2

0<b__10<b__20<c__1+b__10<c__2+b__2

F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=0ua1F11b__1;c__1;uz__1F11b__2;c__2;uz__2&ExponentialE;u&DifferentialD;uΓa

z__1+z__2<10<a

differentiation rule

z__1F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=ab__1F2a+1&comma;b__1+1&comma;b__2&comma;c__1+1&comma;c__2&comma;z__1&comma;z__2c__1

nz__1nF2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=anb__1nF2n+a&comma;n+b__1&comma;b__2&comma;n+c__1&comma;c__2&comma;z__1&comma;z__2c__1n

z__2F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=ab__2F2a+1&comma;b__1&comma;b__2+1&comma;c__1&comma;c__2+1&comma;z__1&comma;z__2c__2

nz__2nF2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=anb__2nF2n+a&comma;b__1&comma;n+b__2&comma;c__1&comma;n+c__2&comma;z__1&comma;z__2c__2n

DE

fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=F2a&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2

2z__12fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=z__22z__2z__1fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2z__11+ab__11z__1+c__1z__1fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2z__1z__11b__1z__2z__2fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2z__1z__11fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2ab__1z__1z__11

2z__2z__1fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2=1z__22z__22fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2z__1b__2z__1fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2z__2+ab__21z__2+c__2z__2fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2z__1z__2fa&comma;b__1&comma;b__2&comma;c__1&comma;c__2&comma;z__1&comma;z__2ab__2z__1z__2

References

  

[1] Appell, P.; Kampe de Feriet, J. Fonctions Hypergeometriques et hyperspheriques. Gauthier-Villars, 1926.

  

[2] Srivastava, H. M.; Karlsson, P. W. Multiple Gaussian Hypergeometric Series. Ellis Horwood, 1985.

Compatibility

• 

The AppellF2 command was introduced in Maple 2017.

• 

For more information on Maple 2017 changes, see Updates in Maple 2017.

See Also

Appell

AppellF1

AppellF3

AppellF4

FunctionAdvisor

Heun

hypergeom

MeijerG