ChebyshevT
Chebyshev function of the first kind
Calling Sequence
Parameters
Description
Examples
ChebyshevT(n, x)
n
-
algebraic expression (the degree)
x
algebraic expression
If the first parameter is a non-negative integer, the ChebyshevT(n, x) function computes the nth Chebyshev polynomial of the first kind evaluated at x.
These polynomials are orthogonal on the interval (-1, 1) with respect to the weight function w⁡x=1−x2+1. These polynomials satisfy the following:
∫−11wt⁢ChebyshevTm,t⁢ChebyshevTn,t⁢ⅆt⁢=⁢0n≠mπn=m=012πn=m≠0
Chebyshev polynomials of the first kind satisfy the following recurrence relation:
ChebyshevT⁡n,x=2⁢x⁢ChebyshevT⁡n−1,x−ChebyshevT⁡n−2,x,for n >= 2
where ChebyshevT(0,x) = 1 and ChebyshevT(1,x) = x.
This definition is analytically extended for arbitrary values of the first argument by
ChebyshevT⁡a,x=hypergeom⁡−a,a,12,12−x2
ChebyshevT⁡3,x
simplify⁡,ChebyshevT
4⁢x3−3⁢x
ChebyshevT⁡2.2,0.5
−0.6691306064
ChebyshevT⁡13,x
series⁡,ChebyshevT
cos⁡arccos⁡x3
diff⁡ChebyshevT⁡1,x,x
−x⁢ChebyshevT⁡1,x−x2+1+ChebyshevT⁡0,x−x2+1
See Also
ChebyshevU
GegenbauerC
HermiteH
JacobiP
LaguerreL
LambertW
LegendreP
numapprox[chebyshev]
orthopoly[T]
Download Help Document