ChebyshevT - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ChebyshevT

Chebyshev function of the first kind

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ChebyshevT(n, x)

Parameters

n

-

algebraic expression (the degree)

x

-

algebraic expression

Description

• 

If the first parameter is a non-negative integer, the ChebyshevT(n, x) function computes the nth Chebyshev polynomial of the first kind evaluated at x.

• 

These polynomials are orthogonal on the interval (-1, 1) with respect to the weight function wx=1x2+1. These polynomials satisfy the following:

11wtChebyshevTm,tChebyshevTn,tⅆt=0nmπn=m=012πn=m0

• 

Chebyshev polynomials of the first kind satisfy the following recurrence relation:

ChebyshevTn,x=2xChebyshevTn1,xChebyshevTn2,x,for n >= 2

  

where ChebyshevT(0,x) = 1 and ChebyshevT(1,x) = x.

• 

This definition is analytically extended for arbitrary values of the first argument by

ChebyshevTa,x=hypergeoma,a,12,12x2

Examples

ChebyshevT3,x

ChebyshevT3,x

(1)

simplify,ChebyshevT

4x33x

(2)

ChebyshevT2.2,0.5

−0.6691306064

(3)

ChebyshevT13,x

ChebyshevT13,x

(4)

series,ChebyshevT

cosarccosx3

(5)

diffChebyshevT1,x,x

xChebyshevT1,xx2+1+ChebyshevT0,xx2+1

(6)

See Also

ChebyshevU

GegenbauerC

HermiteH

JacobiP

LaguerreL

LambertW

LegendreP

numapprox[chebyshev]

orthopoly[T]