GegenbauerC
Gegenbauer (ultraspherical) function
Calling Sequence
Parameters
Description
Examples
GegenbauerC(n, a, x)
n
-
algebraic expression
a
x
The GegenbauerC(n, a, x) function computes the nth Gegenbauer polynomial - see Abramowitz and Stegun, Handbook of Mathematical Functions, Chap. 22.
When all of 2⁢a,1+n,n+2⁢a are not a negative integer or zero, the Gegenbauer polynomials satisfy:
GegenbauerC(n,a,z) = 'piecewise'(n::negint,0, n=0, 1,convert(GegenbauerC(n,a,z),hypergeom));
GegenbauerC⁡n,a,z=0n::ℤ−1n=0Γ⁡n+2⁢a⁢hypergeom⁡−n,n+2⁢a,12+a,−z2+12Γ⁡1+n⁢Γ⁡2⁢aotherwise
and are orthogonal on the interval −1,1 with respect to the weight function w⁡z=−z2+1a−12:
Int(w(z)* GegenbauerC(m, a, z) * GegenbauerC(n, a, z), z=-1..1) = 'piecewise'(n=m, Pi*2^(1-2*a)*GAMMA(n+2*a)/(n!*(n+a)*GAMMA(a)^2),0);
∫−11w⁡z⁢GegenbauerC⁡m,a,z⁢GegenbauerC⁡n,a,zⅆz=π⁢21−2⁢a⁢Γ⁡n+2⁢an!⁢n+a⁢Γ⁡a2n=m0otherwise
When any of 2⁢a,1+n,n+2⁢a is a negative integer or zero, the Gegenbauer polynomials are computed using the following identity:
GegenbauerC(n,a,z) = (2*a*z*(1+2*a)*GegenbauerC(n-1,1+a,z) + 4*(-1+z^2)*a*(1+a)*GegenbauerC(n-2,a+2,z)) / ((n+2*a)*n);
GegenbauerC⁡n,a,z=2⁢a⁢z⁢1+2⁢a⁢GegenbauerC⁡n−1,1+a,z+4⁢z2−1⁢a⁢1+a⁢GegenbauerC⁡n−2,a+2,zn+2⁢a⁢n
which in turn can be derived from the differential equation with respect to z satisfied by this function:
f(z) = GegenbauerC(a,b,z);
f⁡z=GegenbauerC⁡a,b,z
diff(f(z),z,z) = (-1-2*b)*z/(-1+z^2)*diff(f(z),z)+a*(2*b+a)/(-1+z^2)*f(z);
ⅆ2ⅆz2f⁡z=−1−2⁢b⁢z⁢ⅆⅆzf⁡zz2−1+a⁢2⁢b+a⁢f⁡zz2−1
For n::posint and n > 1 and a <> 0, the Gegenbauer polynomials satisfy the following recurrence relations:
GegenbauerC(0,a,z) = 1:
GegenbauerC(1,a,z) = 2*a*z:
GegenbauerC(n,a,z) = 2*(n+a-1)/n*z*GegenbauerC(n-1,a,z) - (n+2*a-2)/n*GegenbauerC(n-2,a,z):
and for a = 0, they are related to the ChebyshevT polynomials:
GegenbauerC(n,0,z) = 2/n*ChebyshevT(n,z):
Special values with respect to n:
simplify⁡GegenbauerC⁡n,a,z,GegenbauerCassumingn::negint
0
simplify⁡GegenbauerC⁡n,a,z,GegenbauerCassumingn=0
1
simplify⁡GegenbauerC⁡3,a,z,GegenbauerC
4⁢a⁢z2⁢a+2⁢z2−32⁢z⁢1+a3
Special values with respect to a:
simplify⁡GegenbauerC⁡n,a,z,GegenbauerCassuminga::negint
simplify⁡GegenbauerC⁡2,a,z,GegenbauerCassuminga=0
2⁢z2−1
simplify⁡GegenbauerC⁡n,a,−z,GegenbauerCassuminga=0,n::posint
−1n⁢GegenbauerC⁡n,a,z
Special values with respect to z:
simplify⁡GegenbauerC⁡n,a,z,GegenbauerCassumingz=0
2n⁢Γ⁡a+n2⁢πΓ⁡a⁢Γ⁡12−n2⁢Γ⁡1+n
simplify⁡GegenbauerC⁡n,a,z,GegenbauerCassumingz=1,n::nonnegint
Γ⁡n+2⁢aΓ⁡1+n⁢Γ⁡2⁢a
simplify⁡GegenbauerC⁡n,a,z,GegenbauerCassumingz=−1,n::nonnegint
−1n⁢Γ⁡n+2⁢aΓ⁡2⁢a⁢n!
See Also
ChebyshevT
ChebyshevU
GAMMA
HermiteH
JacobiP
LaguerreL
LegendreP
orthopoly[G]
simplify
Download Help Document