ChebyshevU
Chebyshev function of the second kind
Calling Sequence
Parameters
Description
Examples
ChebyshevU(n, x)
n
-
algebraic expression (the degree)
x
algebraic expression
If the first parameter is a non-negative integer, then the ChebyshevU(n, x) function computes the nth Chebyshev polynomial of the second kind evaluated at x.
These polynomials are orthogonal on the interval −1,1 with respect to the weight function w⁡x=−x2+1. They satisfy:
∫−11w⁡t⁢ChebyshevU⁡m,t⁢ChebyshevU⁡n,tⅆt={0n≠m12⁢πn=m
Chebyshev polynomials of the second kind satisfy the following recurrence relation:
ChebyshevU⁡n,x=2⁢x⁢ChebyshevU⁡n−1,x−ChebyshevU⁡n−2,x,for n >= 2
where ChebyshevU(0,x) = 1 and ChebyshevU(1,x) = 2*x.
This definition is analytically extended for arbitrary values of the first argument by
ChebyshevU⁡n,x=n+1⁢hypergeom⁡−n,n+2,32,12−x2
ChebyshevU⁡3,x
simplify⁡,ChebyshevU
8⁢x3−4⁢x
ChebyshevU⁡3.2,2.1
86.44386715
See Also
ChebyshevT
GegenbauerC
HermiteH
JacobiP
LaguerreL
LegendreP
orthopoly[U]
Download Help Document