JacobiP - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


JacobiP

Jacobi function

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

JacobiP(n, a, b, x)

Parameters

n

-

algebraic expression

a

-

algebraic expression

b

-

algebraic expression

x

-

algebraic expression

Description

• 

If the first parameter is a non-negative integer, the JacobiP(n, a, b, x) function computes the nth Jacobi polynomial with parameters a and b evaluated at x.

• 

These polynomials are orthogonal on the interval −1,1 with respect to the weight function wx=1xa1+xb when a and b are greater than -1. They satisfy the following:

−11Pma,bxPna,bxwx&d;x={0nm2a+b+1Γn+a+1Γn+b+12n+a+b+1Γn+a+b+1n!n=m

• 

The polynomials satisfy the following recurrence relation:

JacobiP0,a,b,x=1

JacobiP1,a,b,x=a2b2+1+a2+b2x

JacobiPn,a,b,x=2n+a+b1a2b2+2n+a+b22n+a+bxJacobiPn1,a,b,x2nn+a+b2n+a+b2n+a1n+b12n+a+bJacobiPn2,a,b,xnn+a+b2n+a+b2,for n > 1.

• 

For n and not equal to a non-negative integer and a not a negative integer, the analytic extension of the Jacobi polynomial is given by the following:

JacobiPn,a,b,x=a+nahypergeomn,a+b+n+1,a+1,12x2

Examples

JacobiP4,1,34,x

JacobiP4,1,34,x

(1)

simplify,JacobiP

190753276839158192x12973516384x2+97658192x3+38083532768x4

(2)

JacobiP2.2,1,23,0.4

−0.1993478307

(3)

Compatibility

• 

The JacobiP command was updated in Maple 2020.

See Also

ChebyshevT

ChebyshevU

GAMMA

GegenbauerC

HermiteH

LaguerreL

LegendreP

NumberTheory[KroneckerSymbol]

NumberTheory[LegendreSymbol]

orthopoly[P]