JacobiP
Jacobi function
Calling Sequence
Parameters
Description
Examples
Compatibility
JacobiP(n, a, b, x)
n
-
algebraic expression
a
b
x
If the first parameter is a non-negative integer, the JacobiP(n, a, b, x) function computes the nth Jacobi polynomial with parameters a and b evaluated at x.
These polynomials are orthogonal on the interval −1,1 with respect to the weight function w⁡x=1−xa⁢1+xb when a and b are greater than -1. They satisfy the following:
∫−11Pma,bxPna,bxw⁡x&d;x={0n≠m2a+b+1Γ⁡n+a+1Γ⁡n+b+12n+a+b+1Γ⁡n+a+b+1n!n=m
The polynomials satisfy the following recurrence relation:
JacobiP⁡0,a,b,x=1
JacobiP⁡1,a,b,x=a2−b2+1+a2+b2⁢x
JacobiP⁡n,a,b,x=2⁢n+a+b−1⁢a2−b2+2⁢n+a+b−2⁢2⁢n+a+b⁢x⁢JacobiP⁡n−1,a,b,x2⁢n⁢n+a+b⁢2⁢n+a+b−2−n+a−1⁢n+b−1⁢2⁢n+a+b⁢JacobiP⁡n−2,a,b,xn⁢n+a+b⁢2⁢n+a+b−2,for n > 1.
For n and not equal to a non-negative integer and a not a negative integer, the analytic extension of the Jacobi polynomial is given by the following:
JacobiP⁡n,a,b,x=a+na⁢hypergeom⁡−n,a+b+n+1,a+1,12−x2
JacobiP⁡4,1,34,x
simplify⁡,JacobiP
1907532768−39158192⁢x−12973516384⁢x2+97658192⁢x3+38083532768⁢x4
JacobiP⁡2.2,1,23,0.4
−0.1993478307
The JacobiP command was updated in Maple 2020.
See Also
ChebyshevT
ChebyshevU
GAMMA
GegenbauerC
HermiteH
LaguerreL
LegendreP
NumberTheory[KroneckerSymbol]
NumberTheory[LegendreSymbol]
orthopoly[P]
Download Help Document