LaguerreL
Laguerre function
Calling Sequence
Parameters
Description
Examples
LaguerreL(n, a, x)
n
-
algebraic expression
a
(optional) nonrational algebraic expression or rational number
x
The LaguerreL function computes the nth Laguerre polynomial.
If the first parameter is a non-negative integer, the LaguerreL function computes the nth generalized Laguerre polynomial with parameter a evaluated at x.
If a is not specified, LaguerreL(n, x) computes the nth Laguerre polynomial which is equal to LaguerreL(n, 0, x).
The generalized Laguerre polynomials are orthogonal on the interval 0,∞ with respect to the weight function w⁡x=ⅇ−x⁢xa. They satisfy:
∫0∞w⁡t⁢LaguerreL⁡m,a,t⁢LaguerreL⁡n,a,tⅆt={0n≠mΓ⁡n+a+1n!n=m
For positive integer a, the relationship for LaguerreL(n, a, x) and LaguerreL(n, x) is the following.
LaguerreL⁡n,a,x=−1a⁢∂a∂xaLaguerreL⁡n+a,x
Some references define the generalized Laguerre polynomials differently than Maple. Denote the alternate function as altLaguerreL(n, a, x). It is defined as follows:
altLaguerreL⁡n,a,x=∂a∂xaaltLaguerreL⁡n,x
altLaguerreL⁡n,x=n!⁢LaguerreL⁡n,x
For general positive integer a, the relationship for Maple's LaguerreL and altLaguerreL is the following.
altLaguerreL⁡n,a,x=−1a⁢n!⁢LaguerreL⁡n−a,a,x
Laguerre polynomials satisfy the following recurrence relation:
LaguerreL⁡0,a,x=1,
LaguerreL⁡1,a,x=−x+1+a,
LaguerreL⁡n,a,x=2⁢n+a−1−xnLaguerreL⁡n−1,a,x−n+a−1n⁢LaguerreL⁡n−2,a,x,for⁢n>1.
For n not equal to a non-negative integer, the analytic extension of the Laguerre polynomial is given by:
LaguerreL⁡n,a,x=n+an⁢KummerM⁡−n,a+1,x
LaguerreL⁡3,x
simplify⁡,LaguerreL
1−3⁢x+32⁢x2−16⁢x3
LaguerreL⁡3,−12,x
516−158⁢x+54⁢x2−16⁢x3
LaguerreL⁡3.1,1.2
−0.7174310784
LaguerreL⁡2.1,1.2,3.4
−1.498106063
Using the alternate definition for the Laguerre polynomials:
altLaguerreL≔n,a,x↦−1a⋅n!⋅LaguerreL⁡n−a,a,x:
altLaguerreL⁡3,1,x
−6⁢LaguerreL⁡2,1,x
−3⁢x2+18⁢x−18
See Also
ChebyshevT
ChebyshevU
GAMMA
GegenbauerC
HermiteH
JacobiP
LegendreP
orthopoly[L]
simplify
Download Help Document