JacobiZeta
Jacobi's Zeta function
Calling Sequence
Parameters
Description
Examples
JacobiZeta(z, k)
z
-
algebraic expression
k
JacobiZeta is defined by:
FunctionAdvisor(definition, JacobiZeta);
JacobiZeta⁡z,k=ⅆⅆzln⁡JacobiTheta4⁡π⁢z2⁢EllipticK⁡k,EllipticNome⁡k,with no restrictions on ⁡z,k
which is essentially the logarithmic derivative of JacobiTheta4.
JacobiZeta(z,k) is a periodic function of z with period 2⁢EllipticK⁡k
JacobiZeta⁡1.0,0.5
0.06347769531
FunctionAdvisor⁡special_values,JacobiZeta
JacobiZeta⁡−z,k=−JacobiZeta⁡z,k,JacobiZeta⁡z,−k=JacobiZeta⁡z,k,JacobiZeta⁡0,k=0,JacobiZeta⁡z,0=0,JacobiZeta⁡z,1=tanh⁡z,JacobiZeta⁡z,∞=∞+∞⁢I,JacobiZeta⁡2⁢_n1⁢EllipticK⁡k,k=0,_n1::ℤ
FunctionAdvisor⁡sum_form,JacobiZeta
JacobiZeta⁡z,k=∑_k1=1∞⁡−2⁢π⁢EllipticNome⁡k_k1⁢sin⁡_k1⁢π⁢zEllipticK⁡kEllipticK⁡k⁢EllipticNome⁡k2⁢_k1−1,with no restrictions on ⁡z,k
See Also
EllipticE
EllipticK
EllipticNome
FunctionAdvisor
JacobiTheta4
Zeta
Download Help Document