LommelS1
the Lommel function s
LommelS2
the Lommel function S
Calling Sequence
Parameters
Description
Examples
References
LommelS1(mu, nu, z)
LommelS2(mu, nu, z)
mu
-
algebraic expression
nu
z
The LommelS1(mu, nu, z) function is defined in terms of the hypergeometric function
FunctionAdvisor( definition, LommelS1);
LommelS1⁡a,b,z=za+1⁢hypergeom⁡1,32+b2+a2,32−b2+a2,−z24a−b+1⁢a+b+1,−a+b−1≠0∧a+b+1≠0∧32−b2+a2::¬ℤ0,−∧32+b2+a2::¬ℤ0,−
and LommelS2(mu, nu, z) is defined in terms of LommelS1(mu, nu, z) and Bessel functions.
LommelS2(mu,nu,z) = convert(LommelS2(mu,nu,z), LommelS1);
LommelS2⁡μ,ν,z=LommelS1⁡μ,ν,z+2μ−1⁢Γ⁡μ2−ν2+12⁢Γ⁡μ2+ν2+12⁢sin⁡μ−ν⁢π2⁢BesselJ⁡ν,z−cos⁡μ−ν⁢π2⁢BesselY⁡ν,z
These functions solve the non-homogeneous linear differential equation of second order.
z^2*diff(f(z),`$`(z,2))+z*diff(f(z),z)+(z^2-nu^2)*f(z) = z^(mu+1);
z2⁢ⅆ2ⅆz2f⁡z+z⁢ⅆⅆzf⁡z+−ν2+z2⁢f⁡z=zμ+1
The Lommel functions also solve the following third order linear homogeneous differential equation with polynomial coefficients.
FunctionAdvisor( DE, LommelS1(mu,nu,z));
f⁡z=LommelS1⁡μ,ν,z,ⅆ3ⅆz3f⁡z=μ−2⁢ⅆ2ⅆz2f⁡zz+ν2−z2+μ⁢ⅆⅆzf⁡zz2+μ−1⁢z2−ν2⁢μ+1⁢f⁡zz3
The AngerJ and WeberE, StruveH and StruveL functions can be viewed as particular cases of LommelS1.
FunctionAdvisor⁡relate,AngerJ,LommelS1
AngerJ⁡a,z=sin⁡a⁢π⁢LommelS1⁡0,a,z−a⁢LommelS1⁡−1,a,zπ
FunctionAdvisor⁡relate,WeberE,LommelS1
WeberE⁡a,z=−a⁢1−cos⁡a⁢π⁢LommelS1⁡−1,a,z+−1−cos⁡a⁢π⁢LommelS1⁡0,a,zπ
FunctionAdvisor⁡relate,StruveH,LommelS1
StruveH⁡a,z=2⁢LommelS1⁡a,a,zΓ⁡a+12⁢π⁢2a
FunctionAdvisor⁡relate,StruveL,LommelS1
StruveL⁡a,z=−2⁢I⁢LommelS1⁡a,a,I⁢z⁢zaΓ⁡a+12⁢π⁢2⁢I⁢za
A MeijerG representation for the Lommel functions.
LommelS1⁡μ,ν,z=convert⁡LommelS1⁡μ,ν,z,MeijerG
LommelS1⁡μ,ν,z=2μ−1⁢Γ⁡μ2+ν2+12⁢Γ⁡μ2−ν2+12⁢MeijerG⁡μ2+12,,μ2+12,ν2,−ν2,z24
LommelS2⁡μ,ν,z=convert⁡LommelS2⁡μ,ν,z,MeijerG
LommelS2⁡μ,ν,z=MeijerG⁡μ2+12,,μ2+12,ν2,−ν2,,z24⁢2μ2⁢Γ⁡−μ2+ν2+12⁢Γ⁡−μ2−ν2+12
The series expansion of the Lommel functions is not computable using the series command because it would involve factoring out abstract powers, leading to a result of the form z^mu1*series_1 + z^mu2*series_2 + .... This type of extended series expansion, however, can be computed using the Series command of the MathematicalFunctions package.
with⁡MathematicalFunctions,Series
Series
Series⁡LommelS1⁡μ,ν,z,z,4
zμ⁢11+μ−ν⁢1+μ+ν⁢z−11+μ−ν⁢μ−ν+3⁢1+μ+ν⁢μ+ν+3⁢z3+O⁡z5,μ+ν::¬ℤ−∧odd∧μ−ν::¬ℤ−∧odd
Series⁡LommelS2⁡μ,ν,z,z,4
z−ν⁢4ν⁢Γ⁡μ2−ν2+12⁢Γ⁡μ2+ν2+12⁢csc⁡π⁢ν⁢cos⁡μ−ν⁢π2⁢2μ−ν2⁢Γ⁡−ν+1−18⁢4ν⁢Γ⁡μ2−ν2+12⁢Γ⁡μ2+ν2+12⁢csc⁡π⁢ν⁢cos⁡μ−ν⁢π2⁢2μ−νΓ⁡−ν+2⁢z2+O⁡z4+zν⁢−Γ⁡μ2−ν2+12⁢Γ⁡μ2+ν2+12⁢csc⁡π⁢ν⁢cos⁡π⁢μ+ν2⁢2μ−ν2⁢Γ⁡ν+1+18⁢Γ⁡μ2−ν2+12⁢Γ⁡μ2+ν2+12⁢csc⁡π⁢ν⁢cos⁡π⁢μ+ν2⁢2μ−νΓ⁡ν+2⁢z2+O⁡z4+zμ⁢11+μ−ν⁢1+μ+ν⁢z−11+μ−ν⁢μ−ν+3⁢1+μ+ν⁢μ+ν+3⁢z3+O⁡z5,ν::¬ℤ∧μ2−ν2+12::¬ℤ0,−∧μ2+ν2+12::¬ℤ0,−∧μ2−ν2+32::¬ℤ0,−∧μ2+ν2+32::¬ℤ0,−
Abramowitz, M., and Stegun, I., eds. Handbook of Mathematical Functions. New York: Dover publications.
Gradshteyn, and Ryzhik. Table of Integrals, Series and Products. 5th ed. Academic Press.
Luke, Y. The Special Functions and Their Approximations. Vol. 1 Chap. 6.
See Also
AngerJ
FunctionAdvisor
hypergeom
MathematicalFunctions
MeijerG
Struve Functions
WeberE
Download Help Document