SphericalY - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


SphericalY

The Spherical Harmonics function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

SphericalY(λ, μ, θ, φ)

Parameters

λ

-

algebraic expression

μ

-

algebraic expression

θ

-

algebraic expression

φ

-

algebraic expression

Description

  

SphericalY(λ, μ, θ, φ) represents spherical harmonics, that is, the angular part of the solution to Laplace's equation in spherical coordinates (r,θ,φ).

Diff(r^2*Diff(f(r,theta,phi),r),r) + 1/sin(theta)*Diff(sin(theta)*Diff(f(r,theta,phi),theta),theta) + 1/sin(theta)^2*Diff(f(r,theta,phi),phi,phi) = 0;

rr2rfr,θ,φ+θsinθθfr,θ,φsinθ+2φ2fr,θ,φsinθ2=0

(1)
  

The SphericalY functions are particularly relevant in quantum mechanics, where they are eigenfunctions of observable operators associated with angular momentum - see Abramowitz and Stegun, Chapter VI. SphericalY is normalized such that

Int(Int(abs(SphericalY(lambda,lambda,theta,phi))^2*sin(theta),theta=0..Pi),phi=0..2*Pi) = 1;

02π0πSphericalYλ,λ,θ,φ2sinθⅆθⅆφ=1

(2)
  

so that when written in terms of the associated LegendreP function of the first kind, SphericalY is given by

FunctionAdvisor( definition, SphericalY );

SphericalYλ,μ,θ,φ=−1μ2λ+1πλμ!ⅇIφμLegendrePλ,μ,cosθ2λ+μ!,¬λ+μ::¬λμ::

(3)
  

Attention should be paid to the normalization conventions adopted. The requirement that the double integral mentioned is equal to one does not fix a phase, which can then be chosen in different ways; following the definitions given by references 2 and 3 (at the bottom), thus, in Maple the right-hand side of the definition above includes the multiplicative factor −1μ. In second place, the Maple choice for the branch cuts of LegendrePλ,μ,z follow conventions which, for λ and μ not integers and outside a unit circle around z=0, are slightly different than those presented for instance in the first reference below. Finally, noting that SphericalY is more frequently used with λ and μ integers, λ positive and μλ, in this case the three square roots entering the definition above,

((2*lambda+1)/Pi)^(1/2)*(lambda-mu)!^(1/2)/(lambda+mu)!^(1/2);

2λ+1πλμ!λ+μ!

(4)
  

can be combined,

combine((4)) assuming posint;

2λ+1λμ!πλ+μ!

(5)
  

resulting into a form of the definition usually presented in textbooks - this combination of the radicals, however, is not valid for arbitrary complex values of λ or μ.

  

The SphericalY functions constitute a complete set of orthonormal functions satisfying

Int(Int(SphericalY(lambda,mu,theta,phi)*conjugate(SphericalY(rho,nu,theta,phi))*sin(theta),theta=0..Pi),phi=0..2*Pi) = delta[lambda,rho]*delta[mu,nu];

02π0πSphericalYλ,μ,θ,φSphericalYρ,ν,θ,φ&conjugate0;sinθⅆθⅆφ=δλ,ρδμ,ν

(6)
  

where in the right-hand side we have Kronecker deltas. Due to the rich structure of these functions, including periodicity with respect to both θ and φ and reflection properties regarding each of its four arguments, the number of identities they satisfy is rather large. Some important ones are

FunctionAdvisor( identities, SphericalY );

SphericalYλ,μ,θ,φ=SphericalYλ,μ,θ,φ,SphericalYλ,μ,θ,φ=SphericalYλ,μ,θ,φⅇ2Iμφ,SphericalYλ,μ,θ,φ=SphericalY1λ,μ,θ,φ2λ+1ΓμλΓλμ+112λΓλμΓμ+λ+1,μλ::¬0,λμ::¬0,μ+λ+1::¬0,λμ+1::¬0,,SphericalYλ,μ,θ,φ=SphericalYλ,μ,θ,φⅇ2Iμφ,λ::0,+μ::μλλμ,SphericalYλ,μ,θ,φ=−1μSphericalYλ,μ,θ,φ&conjugate0;,λ::0,+μ::μλλμ,SphericalYλ,μ,θ,φ=SphericalYλ,μ,2nπ+θ,φ,n::,SphericalYλ,μ,θ,φ=SphericalYλ,μ,θ,φ+2πnμ,n::μ0

(7)

Examples

Expressing SphericalY in terms of LegendreP

convertSphericalYλ,μ,θ,φ,LegendreP

−1μ2λ+1πλμ!ⅇIφμLegendrePλ,μ,cosθ2λ+μ!

(8)

In the typical case where λ is a positive integer, μ is an integer and μλ the square roots are automatically combined resulting in the form frequently found in textbooks

convertSphericalYλ,μ,θ,φ,LegendrePassumingλ::posint,μ::integer,absμλ

−1μ2λ+1λμ!πλ+μ!ⅇIφμLegendrePλ,μ,cosθ2

(9)

Special values

FunctionAdvisorspecial_values,SphericalY

SphericalYλ&comma;μ&comma;θ&comma;φ=0&comma;2λ+1=0&comma;SphericalYλ&comma;μ&comma;θ&comma;φ=0&comma;μ::θπ::even&comma;SphericalYλ&comma;μ&comma;θ&comma;φ=0&comma;μ<0θπ::even&comma;SphericalYλ&comma;μ&comma;θ&comma;φ=0&comma;λ::0&comma;+μ::+λ<μ&comma;SphericalYλ&comma;μ&comma;θ&comma;φ=0&comma;λ::0&comma;+θπ::μ::+&comma;SphericalYλ&comma;μ&comma;θ&comma;φ=−1λ2θ2ππθπ2λ+1π2&comma;λ::0&comma;+θπ::μ=0

(10)

Hypergeometric representation

FunctionAdvisorspecialize&comma;SphericalY&comma;hypergeom

SphericalYλ&comma;μ&comma;θ&comma;φ=−1μ2λ+1πλμ!&ExponentialE;Iφμcosθ+1μ2hypergeomλ&comma;λ+1&comma;1μ&comma;12cosθ22λ+μ!cosθ1μ2Γ1μ&comma;¬λ+μ::¬λμ::¬1μ::0&comma;

(11)

References

  

Abramowitz, M., and Stegun, I., eds. Handbook of Mathematical Functions. New York: Dover Publications.

  

Arfken, G., and Weber, H.J. Mathematical Methods for Physicists. 3rd ed. Academic Press, 1985.

  

Cohen-Tannoudji, C.; Diu, B.; and Laloe, F. Quantum Mechanics. Paris: Hermann, 1977. Vol. 1, Complement A-VI.

See Also

FunctionAdvisor

hypergeom

JacobiP

LegendreP