SphericalY
The Spherical Harmonics function
Calling Sequence
Parameters
Description
Examples
References
SphericalY(λ, μ, θ, φ)
λ
-
algebraic expression
μ
θ
φ
SphericalY(λ, μ, θ, φ) represents spherical harmonics, that is, the angular part of the solution to Laplace's equation in spherical coordinates (r,θ,φ).
Diff(r^2*Diff(f(r,theta,phi),r),r) + 1/sin(theta)*Diff(sin(theta)*Diff(f(r,theta,phi),theta),theta) + 1/sin(theta)^2*Diff(f(r,theta,phi),phi,phi) = 0;
∂∂rr2⁢∂∂rf⁡r,θ,φ+∂∂θsin⁡θ⁢∂∂θf⁡r,θ,φsin⁡θ+∂2∂φ2f⁡r,θ,φsin⁡θ2=0
The SphericalY functions are particularly relevant in quantum mechanics, where they are eigenfunctions of observable operators associated with angular momentum - see Abramowitz and Stegun, Chapter VI. SphericalY is normalized such that
Int(Int(abs(SphericalY(lambda,lambda,theta,phi))^2*sin(theta),theta=0..Pi),phi=0..2*Pi) = 1;
∫02⁢π∫0πSphericalY⁡λ,λ,θ,φ2⁢sin⁡θⅆθⅆφ=1
so that when written in terms of the associated LegendreP function of the first kind, SphericalY is given by
FunctionAdvisor( definition, SphericalY );
SphericalY⁡λ,μ,θ,φ=−1μ⁢2⁢λ+1π⁢λ−μ!⁢ⅇI⁢φ⁢μ⁢LegendreP⁡λ,μ,cos⁡θ2⁢λ+μ!,¬λ+μ::ℤ−∧¬λ−μ::ℤ−
Attention should be paid to the normalization conventions adopted. The requirement that the double integral mentioned is equal to one does not fix a phase, which can then be chosen in different ways; following the definitions given by references 2 and 3 (at the bottom), thus, in Maple the right-hand side of the definition above includes the multiplicative factor −1μ. In second place, the Maple choice for the branch cuts of LegendreP⁡λ,μ,z follow conventions which, for λ and μ not integers and outside a unit circle around z=0, are slightly different than those presented for instance in the first reference below. Finally, noting that SphericalY is more frequently used with λ and μ integers, λ positive and μ≤λ, in this case the three square roots entering the definition above,
((2*lambda+1)/Pi)^(1/2)*(lambda-mu)!^(1/2)/(lambda+mu)!^(1/2);
2⁢λ+1π⁢λ−μ!λ+μ!
can be combined,
combine((4)) assuming posint;
2⁢λ+1⁢λ−μ!π⁢λ+μ!
resulting into a form of the definition usually presented in textbooks - this combination of the radicals, however, is not valid for arbitrary complex values of λ or μ.
The SphericalY functions constitute a complete set of orthonormal functions satisfying
Int(Int(SphericalY(lambda,mu,theta,phi)*conjugate(SphericalY(rho,nu,theta,phi))*sin(theta),theta=0..Pi),phi=0..2*Pi) = delta[lambda,rho]*delta[mu,nu];
∫02⁢π∫0πSphericalY⁡λ,μ,θ,φ⁢SphericalY⁡ρ,ν,θ,φ&conjugate0;⁢sin⁡θⅆθⅆφ=δλ,ρ⁢δμ,ν
where in the right-hand side we have Kronecker deltas. Due to the rich structure of these functions, including periodicity with respect to both θ and φ and reflection properties regarding each of its four arguments, the number of identities they satisfy is rather large. Some important ones are
FunctionAdvisor( identities, SphericalY );
SphericalY⁡λ,μ,θ,φ=SphericalY⁡λ,μ,−θ,φ,SphericalY⁡λ,μ,θ,φ=SphericalY⁡λ,μ,θ,−φ⁢ⅇ2⁢I⁢μ⁢φ,SphericalY⁡λ,μ,θ,φ=SphericalY⁡−1−λ,μ,θ,φ⁢2⁢λ+1⁢Γ⁡μ−λ⁢Γ⁡λ−μ+1−1−2⁢λ⁢Γ⁡−λ−μ⁢Γ⁡μ+λ+1,μ−λ::¬ℤ0,−∧−λ−μ::¬ℤ0,−∧μ+λ+1::¬ℤ0,−∧λ−μ+1::¬ℤ0,−,SphericalY⁡λ,μ,θ,φ=SphericalY⁡λ,−μ,θ,φ⁢ⅇ2⁢I⁢μ⁢φ,λ::ℤ0,+∧μ::ℤ∧μ≤λ∧−λ≤−μ,SphericalY⁡λ,μ,θ,φ=−1μ⁢SphericalY⁡λ,−μ,θ,φ&conjugate0;,λ::ℤ0,+∧μ::ℤ∧μ≤λ∧−λ≤−μ,SphericalY⁡λ,μ,θ,φ=SphericalY⁡λ,μ,2⁢n⁢π+θ,φ,n::ℤ,SphericalY⁡λ,μ,θ,φ=SphericalY⁡λ,μ,θ,φ+2⁢π⁢nμ,n::ℤ∧μ≠0
Expressing SphericalY in terms of LegendreP
convert⁡SphericalY⁡λ,μ,θ,φ,LegendreP
−1μ⁢2⁢λ+1π⁢λ−μ!⁢ⅇI⁢φ⁢μ⁢LegendreP⁡λ,μ,cos⁡θ2⁢λ+μ!
In the typical case where λ is a positive integer, μ is an integer and μ≤λ the square roots are automatically combined resulting in the form frequently found in textbooks
convert⁡SphericalY⁡λ,μ,θ,φ,LegendrePassumingλ::posint,μ::integer,abs⁡μ≤λ
−1μ⁢2⁢λ+1⁢λ−μ!π⁢λ+μ!⁢ⅇI⁢φ⁢μ⁢LegendreP⁡λ,μ,cos⁡θ2
Special values
FunctionAdvisor⁡special_values,SphericalY
SphericalY⁡λ,μ,θ,φ=0,2⁢λ+1=0,SphericalY⁡λ,μ,θ,φ=0,μ::ℤ∧θπ::even,SphericalY⁡λ,μ,θ,φ=0,ℜ⁡μ<0∧θπ::even,SphericalY⁡λ,μ,θ,φ=0,λ::ℤ0,+∧μ::ℤ+∧λ<μ,SphericalY⁡λ,μ,θ,φ=0,λ::ℤ0,+∧θπ::ℤ∧μ::ℤ+,SphericalY⁡λ,μ,θ,φ=−1λ⁢2⁢θ2⁢π⁢π−θπ⁢2⁢λ+1π2,λ::ℤ0,+∧θπ::ℤ∧μ=0
Hypergeometric representation
FunctionAdvisor⁡specialize,SphericalY,hypergeom
SphericalY⁡λ,μ,θ,φ=−1μ⁢2⁢λ+1π⁢λ−μ!⁢ⅇI⁢φ⁢μ⁢cos⁡θ+1μ2⁢hypergeom⁡−λ,λ+1,1−μ,12−cos⁡θ22⁢λ+μ!⁢cos⁡θ−1μ2⁢Γ⁡1−μ,¬λ+μ::ℤ−∧¬λ−μ::ℤ−∧¬1−μ::ℤ0,−
Abramowitz, M., and Stegun, I., eds. Handbook of Mathematical Functions. New York: Dover Publications.
Arfken, G., and Weber, H.J. Mathematical Methods for Physicists. 3rd ed. Academic Press, 1985.
Cohen-Tannoudji, C.; Diu, B.; and Laloe, F. Quantum Mechanics. Paris: Hermann, 1977. Vol. 1, Complement A-VI.
See Also
FunctionAdvisor
hypergeom
JacobiP
LegendreP
Download Help Document