FunctionAdvisor/display
display information about a mathematical function organized in sections
FunctionAdvisor/table
return a table of information about a mathematical function
Calling Sequence
Parameters
Description
Examples
Compatibility
FunctionAdvisor(math_function)
FunctionAdvisor(display, math_function)
FunctionAdvisor(table, math_function)
math_function
-
name of known mathematical function; see type/mathfunc
display
(optional) literal name 'display'
table
(optional) literal name 'table'; return a table of information about math_function
The FunctionAdvisor(math_function) command returns the information regarding that function available to the system. The information that displays is organized in sections as shown in the examples.
Although the mathematical information in the sections is all computable (for instance, you can click a formula and explore it by using the operations available in the Context Panel, or just copy and paste it to work with it), it is sometimes convenient to have this information directly presented in a form that is more suitable for further computations. For this purpose use the optional argument table, in which case the same information is presented now as a table where the indices are the topics and the entries are the corresponding information.
The calling sequence FunctionAdvisor(display, math_function) is equivalent to FunctionAdvisor(math_function). Prior to Maple 2016, FunctionAdvisor(math_function) returned a table.
The information about a mathematical function organized in closed sections
FunctionAdvisor⁡sin
sin
describe
sin=sine function
definition
sin⁡z=−I2⁢ⅇI⁢z−1ⅇI⁢z
with no restrictions on ⁡z
classify function
trig
elementary
symmetries
sin⁡−z=−sin⁡z
sin⁡z&conjugate0;=sin⁡z&conjugate0;
periodicity
sin⁡2⁢π⁢m+z=sin⁡z
m::ℤ
sin⁡π⁢m+z=−1m⁢sin⁡z
plot
singularities
sin⁡z
z=∞+∞⁢I
branch points
No branch points
branch cuts
No branch cuts
special values
sin⁡π6=12
sin⁡π4=22
sin⁡π3=32
sin⁡∞=undefined
sin⁡∞⁢I=∞⁢I
sin⁡π⁢n=0
n::ℤ
sin⁡2⁢n+1⁢π2=−1
n::odd
sin⁡2⁢n+1⁢π2=1
n::even
identities
sin⁡arcsin⁡z=z
sin⁡z=−sin⁡−z
sin⁡z=2⁢sin⁡z2⁢cos⁡z2
sin⁡z=1csc⁡z
sin⁡z=2⁢tan⁡z21+tan⁡z22
sin⁡z=−I2⁢ⅇI⁢z−ⅇ−I⁢z
sin⁡z2=1−cos⁡z2
sin⁡z2=12−cos⁡2⁢z2
sum form
sin⁡z=∑_k1=0∞⁡−1_k1⁢z2⁢_k1+12⁢_k1+1!
series
series⁡sin⁡z,z,4=z−16⁢z3+O⁡z5
integral form
sin⁡z=z⁢∫01ⅇ2⁢I⁢_t1⁢zⅆ_t1ⅇI⁢z
differentiation rule
ⅆⅆzsin⁡z=cos⁡z
ⅆnⅆznsin⁡z=sin⁡z+n⁢π2
DE
f⁡z=sin⁡z
ⅆ2ⅆz2f⁡z=−f⁡z
To get a Maple table structure with this same information use the table keyword (to avoid verbosity, use the option quiet)
sin_info≔FunctionAdvisor⁡table,sin,quiet
sin_info≔table⁡definition=sin⁡z=−I2⁢ⅇI⁢z−1ⅇI⁢z,with no restrictions on ⁡z,classify_function=trig,elementary,branch_points=sin⁡z,No branch points,symmetries=sin⁡−z=−sin⁡z,sin⁡z&conjugate0;=sin⁡z&conjugate0;,differentiation_rule=ⅆⅆzsin⁡z=cos⁡z,ⅆnⅆznsin⁡z=sin⁡z+n⁢π2,describe=sin=sine function,identities=sin⁡arcsin⁡z=z,sin⁡z=−sin⁡−z,sin⁡z=2⁢sin⁡z2⁢cos⁡z2,sin⁡z=1csc⁡z,sin⁡z=2⁢tan⁡z21+tan⁡z22,sin⁡z=−I2⁢ⅇI⁢z−ⅇ−I⁢z,sin⁡z2=1−cos⁡z2,sin⁡z2=12−cos⁡2⁢z2,sum_form=sin⁡z=∑_k1=0∞⁡−1_k1⁢z2⁢_k1+12⁢_k1+1!,with no restrictions on ⁡z,integral_form=sin⁡z=z⁢∫01ⅇ2⁢I⁢_t1⁢zⅆ_t1ⅇI⁢z,with no restrictions on ⁡z,special_values=sin⁡π6=12,sin⁡π4=22,sin⁡π3=32,sin⁡∞=undefined,sin⁡∞⁢I=∞⁢I,sin⁡π⁢n=0,∧⁡n::ℤ,sin⁡2⁢n+1⁢π2=−1,∧⁡n::odd,sin⁡2⁢n+1⁢π2=1,∧⁡n::even,calling_sequence=sin⁡z,periodicity=sin⁡2⁢π⁢m+z=sin⁡z,∧⁡m::ℤ,sin⁡π⁢m+z=−1m⁢sin⁡z,∧⁡m::ℤ,asymptotic_expansion=,series=series⁡sin⁡z,z,4=z−16⁢z3+O⁡z5,DE=f⁡z=sin⁡z,ⅆ2ⅆz2f⁡z=−f⁡z,branch_cuts=sin⁡z,No branch cuts,singularities=sin⁡z,z=∞+∞⁢I
You can now access the information indexing with the FunctionAdvisor topics
sin_infodifferentiation_rule
ⅆⅆzsin⁡z=cos⁡z,ⅆnⅆznsin⁡z=sin⁡z+n⁢π2
The FunctionAdvisor/table command was introduced in Maple 2016.
For more information on Maple 2016 changes, see Updates in Maple 2016.
See Also
entries
FunctionAdvisor
FunctionAdvisor/topics
indices
type/mathfunc
Download Help Document