FunctionAdvisor/identities
return the identities of a given mathematical function
Calling Sequence
Parameters
Description
Examples
FunctionAdvisor(identities, math_function)
identities
-
literal name; 'identities'
math_function
Maple name of mathematical function
The FunctionAdvisor(identities, math_function) command returns a list of identities for that function.
FunctionAdvisor⁡identities,sin
sin⁡arcsin⁡z=z,sin⁡z=−sin⁡−z,sin⁡z=2⁢sin⁡z2⁢cos⁡z2,sin⁡z=1csc⁡z,sin⁡z=2⁢tan⁡z21+tan⁡z22,sin⁡z=−I2⁢ⅇI⁢z−ⅇ−I⁢z,sin⁡z2=1−cos⁡z2,sin⁡z2=12−cos⁡2⁢z2
FunctionAdvisor⁡describe,coth
coth=hyperbolic cotangent
FunctionAdvisor⁡definition,coth
coth⁡z=ⅇz2+1ⅇz2−1,with no restrictions on ⁡z
FunctionAdvisor⁡identities,coth
coth⁡z=−coth⁡−z,coth⁡z=−−coth⁡z22−12⁢coth⁡z2,coth⁡z=cosh⁡zsinh⁡z,coth⁡z=1+cosh⁡2⁢zsinh⁡2⁢z,coth⁡z=−sinh⁡2⁢z1−cosh⁡2⁢z,coth⁡z=1tanh⁡z,coth⁡z=1+tanh⁡z222⁢tanh⁡z2,coth⁡z=I⁢−I⁢coth⁡z22−I⁢tanh⁡z22,coth⁡z=−ⅇ−z+ⅇzⅇ−z−ⅇz,coth⁡z=I⁢−I⁢csch⁡2⁢z−I⁢coth⁡2⁢z
eq1≔FunctionAdvisor⁡identities,BesselI
eq1≔BesselI⁡a,−z=−za⁢BesselI⁡a,zza,BesselI⁡a,I⁢z=I⁢za⁢BesselJ⁡a,zza,BesselI⁡a+1,z⁢BesselI⁡−a,z−BesselI⁡−1−a,z⁢BesselI⁡a,z=2⁢sin⁡a⁢ππ⁢z,BesselI⁡a,z2=z2a2⁢BesselI⁡a,zza,BesselI⁡a,b⁢c⁢zqp=b⁢c⁢zqpa⁢BesselI⁡a,b⁢cp⁢zp⁢qb⁢cp⁢zp⁢qa,2⁢p::ℤ,BesselI⁡a,z=−2⁢a−1⁢BesselI⁡a−1,zz+BesselI⁡a−2,z,BesselI⁡a,z=2⁢a+1⁢BesselI⁡a+1,zz+BesselI⁡a+2,z
The variables used by the FunctionAdvisor command to create the function calling sequences are local variables. Therefore, the previous example does not depend on a or z.
depends⁡eq1,a,depends⁡eq1,z
false,false
To make the FunctionAdvisor command return results using global variables, pass the function call itself when requesting the function identities.
eq2≔FunctionAdvisor⁡identities,Ei⁡a,z
eq2≔Ei1⁡z=−Ei⁡−z+ln⁡−z2−ln⁡−1z2−ln⁡z,Ei−a⁡z=a!⁢ⅇ−z⁢∑_k1=0a⁡z_k1−a−1_k1!,a::ℤ0,+,Eia⁡z=z⁢Ei−2+a⁡z+−2+a−z⁢Ei−1+a⁡z−1+a,Eia⁡z=−a+z⁢Ei1+a⁡z+1+a⁢Ei2+a⁡zz
depends⁡eq2,a,depends⁡eq2,z
true,true
See Also
depends
FunctionAdvisor
FunctionAdvisor/special_values
FunctionAdvisor/topics
Download Help Document