FunctionAdvisor/integral_form
return the integral form of a given mathematical function
Calling Sequence
Parameters
Description
Examples
FunctionAdvisor(integral_form, math_function)
integral_form
-
literal name; 'integral_form'
math_function
Maple name of mathematical function
The FunctionAdvisor(integral_form, math_function) command returns the integral form for the function, if it exists.
FunctionAdvisor⁡integral_form,sin
sin⁡z=z⁢∫01ⅇ2⁢I⁢_t1⁢zⅆ_t1ⅇI⁢z,with no restrictions on ⁡z
FunctionAdvisor⁡integral_form,Β⁡a,z
Β⁡a,z=∫01_k1a−1⁢1−_k1z−1ⅆ_k1,0<ℜ⁡a∧0<ℜ⁡z
FunctionAdvisor⁡describe,EllipticE
EllipticE=incomplete or complete elliptic integral of the second kind
FunctionAdvisor⁡integral,EllipticE
* Partial match of "integral" against topic "integral_form".
EllipticE⁡k=∫01−k2⁢_α12+1−_α12+1ⅆ_α1,with no restrictions on ⁡k,EllipticE⁡z,k=∫0z−_α12⁢k2+1−_α12+1ⅆ_α1,with no restrictions on ⁡z,k
ex1≔FunctionAdvisor⁡integral,BesselJ
ex1≔BesselJ⁡a,z=∫−ππ12⁢π⁢ⅇI⁢a⁢_k1−z⁢sin⁡_k1ⅆ_k1,a::ℤ,BesselJ⁡a,z=∫0∞−2⁢sin⁡−z⁢cosh⁡_k1+a⁢π2⁢cosh⁡a⁢_k1πⅆ_k1,z::real,BesselJ⁡a,z=∫0πcos⁡a⁢_k1−z⁢sin⁡_k1πⅆ_k1−sin⁡a⁢π⁢∫0∞1ⅇI⁢_k1+z⁢sinh⁡_k1ⅆ_k1π,0<ℜ⁡z,BesselJ⁡a,z=za⁢∫01ⅇ2⁢I⁢_t1⁢z⁢_t1−12+a⁢1−_t1−12+aⅆ_t1⁢21+2⁢a2⁢2a⁢Γ⁡12+a⁢ⅇI⁢z⁢π,0<12+ℜ⁡a
The variables used by the FunctionAdvisor command to create the function calling sequences are local variables. Therefore, the previous example does not depend on a or z.
depends⁡ex1,a,depends⁡ex1,z
false,false
To make the FunctionAdvisor command return resulting using global variables, pass the function call itself.
FunctionAdvisor⁡calling,EllipticF
* Partial match of "calling" against topic "calling_sequence".
EllipticF⁡z,k
ex2≔FunctionAdvisor⁡integral,EllipticF⁡a,z
ex2≔EllipticF⁡a,z=∫0a1−_α12+1⁢−z2⁢_α12+1ⅆ_α1,with no restrictions on ⁡a,z
depends⁡ex2,a,depends⁡ex2,z
true,true
See Also
depends
FunctionAdvisor
FunctionAdvisor/definition
FunctionAdvisor/sum_form
FunctionAdvisor/topics
Download Help Document