Content
inert content function
Primpart
inert primitive part function
Calling Sequence
Parameters
Description
Examples
Content(a, x, 'pp')
Primpart(a, x, 'co' )
a
-
multivariate polynomial in x
x
(optional) name or set or list of names
pp
(optional) unevaluated name
co
Content and Primpart are placeholders for a content and primitive part of a polynomial over a coefficient domain. They are used in conjunction with mod and evala as described below.
The calls Content(a, x) mod p and Primpart(a, x) mod p compute the content and primitive part of a respectively modulo the prime integer p. The argument a must be a multivariate polynomial over the rationals or over a finite field specified by RootOfs. See content for more information.
The calls evala(Content(a,x)) and evala(Primpart(a,x)) compute a content and a primitive part of a respectively over a coefficient domain which may include algebraic numbers and algebraic functions. The polynomial a must be a multivariate polynomial with algebraic number (or function) coefficients specified by RootOfs or radicals. See evala,Content for more information.
The optional arguments 'pp' and 'co' are assigned a/Content(a) and a/Primpart(a) respectively, computed over the appropriate coefficient domain.
Content⁡x⁢y+4+y2+4,xmod5
y+4
Primpart⁡x⁢y+4+y2+4,xmod5
x+y+1
a≔5⁢x3+3⁢y2
Content⁡a,xmod11
1
Primpart⁡a,x,c1mod11
x3+5⁢y2
c1
5
p≔expand⁡t⁢sqrt⁡2⁢x+1⁢y−1sqrt⁡2
p≔t⁢2⁢x⁢y−t⁢x+t⁢y−t⁢22
evala⁡Primpart⁡p,y
−1+2⁢y
r≔RootOf⁡x3+x+1
r≔RootOf⁡_Z3+_Z+1
q≔evala⁡Expand⁡y−r⁢x+r2+1
q≔RootOf⁡_Z3+_Z+12⁢y−RootOf⁡_Z3+_Z+1⁢x+x⁢y+y+1
evala⁡Content⁡q,x,q1
y−RootOf⁡_Z3+_Z+1
q1
RootOf⁡_Z3+_Z+12+x+1
See Also
content
evala
mod
primpart
RootOf
Download Help Document