convert/1F1
convert to special functions admitting a 1F1 hypergeometric representation
Calling Sequence
Parameters
Description
Examples
convert(expr, `1F1`)
expr
-
a Maple expression, equation, or a set or list of them.
convert/1F1 converts, when possible, hypergeometric, MeijerG, and special functions admitting a 0F1 hypergeometric representation into special functions admitting a 1F1 hypergeometric representation; that is, into one of
FunctionAdvisor( `1F1` );
The 20 functions in the "1F1" class are particular cases of the hypergeometric function and are given by:
CoulombF,CylinderD,CylinderU,CylinderV,Ei,FresnelC,FresnelS,Fresnelf,Fresnelg,Γ,HermiteH,KummerM,KummerU,LaguerreL,WhittakerM,WhittakerW,dawson,erf,erfc,erfi
convert/1F1 accepts as optional arguments all those described in convert/to_special_function.
BesselI⁡a,I⁢z
convert⁡,`1F1`
I⁢za⁢LaguerreL⁡−12−a,2⁢a,2⁢I⁢zΓ⁡a+1⁢2a⁢−12+a−12−a⁢ⅇI⁢z
hypergeom⁡,c,z
LaguerreL⁡12−c,−2+2⁢c,4⁢zc−3212−c⁢ⅇ2⁢z
MeijerG⁡,,12⁢a,−12⁢a,,14⁢z2
MeijerG⁡,,a2,−a2,,z24
Γ⁡a⁢LaguerreL⁡−12+a,−2⁢a,2⁢zz24a2⁢−12−a−12+a⁢ⅇz+Γ⁡−a⁢z24a2⁢LaguerreL⁡−12−a,2⁢a,2⁢z−12+a−12−a⁢ⅇz
BesselJ⁡a,z+KelvinBei⁡a−1,z−1
za⁢LaguerreL⁡−12−a,2⁢a,2⁢I⁢zΓ⁡a+1⁢2a⁢−12+a−12−a⁢ⅇI⁢z−I⁢ⅇ12+I2⁢z−1⁢2⁢−12+I2⁢z−1⁢2a−1⁢LaguerreL⁡12−a,−2+2⁢a,−1−I⁢z−1⁢2Γ⁡a⁢−32+a12−a⁢2a+I⁢−12−I2⁢z−1⁢2a−1⁢LaguerreL⁡12−a,−2+2⁢a,−1+I⁢z−1⁢2⁢ⅇ12−I2⁢z−1⁢2Γ⁡a⁢−32+a12−a⁢2a
See Also
convert
convert/`0F1`
convert/`2F1`
convert/to_special_function
FunctionAdvisor
Download Help Document