convert/2F1
convert to special functions admitting a 2F1 hypergeometric representation
Calling Sequence
Parameters
Description
Examples
convert(expr, `2F1`)
expr
-
Maple expression, equation, or a set or list of them
convert/2F1 converts, when possible, hypergeometric / MeijerG functions into special functions admitting a 2F1 hypergeometric representation; that is, into one of
FunctionAdvisor( `2F1` );
The 26 functions in the "2F1" class are particular cases of the hypergeometric function and are given by:
ChebyshevT,ChebyshevU,EllipticCE,EllipticCK,EllipticE,EllipticK,GaussAGM,GegenbauerC,JacobiP,LegendreP,LegendreQ,LerchPhi,SphericalY,arccos,arccosh,arccot,arccoth,arccsc,arccsch,arcsec,arcsech,arcsin,arcsinh,arctan,arctanh,ln
convert/2F1 accepts as optional arguments all those described in convert/to_special_function.
z⁢hypergeom⁡12,1,32,z2
convert⁡,`2F1`
arctanh⁡z
hypergeom⁡−12,12,1,z2
JacobiP⁡12,0,−1,−2⁢z2+1
hypergeom⁡12⁢a+12⁢b+12,1+12⁢a+12⁢b,a+32,1z2
hypergeom⁡1+a2+b2,a2+b2+12,a+32,1z2
Γ⁡a+32⁢Γ⁡−a2−b2⁢JacobiP⁡−a2−1−b2,a+12,b,z2−2z2Γ⁡a2+12−b2
hypergeom⁡b+c+a+1,−a,1+b,12−12⁢z
hypergeom⁡−a,b+c+a+1,1+b,12−z2
Γ⁡1+b⁢Γ⁡a+1⁢JacobiP⁡a,b,c,zΓ⁡a+b+1
MeijerG⁡0,12,,0,−12,−1z2
2⁢z⁢arctanh⁡1z
MeijerG⁡12,12,,0,0,−1+z2
MeijerG⁡12,12,,0,0,z2−1
π⁢GegenbauerC⁡−12,12,2⁢z2−1
MeijerG⁡−12⁢a−12⁢b,12−12⁢a−12⁢b,,0,−12−a,−1z2
MeijerG⁡−a2−b2,12−a2−b2,,0,−a−12,−1z2
−π⁢Γ⁡1+a2+b2⁢JacobiP⁡−12−a2−b2,a+12,b,z2−2z2Γ⁡a2+1−b2⁢sin⁡−a+b+1⁢π2
MeijerG⁡−a,a+1,,0,b,−12+12⁢z
MeijerG⁡−a,a+1,,0,b,−12+z2
−π⁢csc⁡π⁢a⁢z−1b2⁢LegendreP⁡a,b,z1+zb2
See Also
convert
convert/`0F1`
convert/`1F1`
convert/to_special_function
FunctionAdvisor
Download Help Document