convert/Hankel
convert special functions admitting 1F1 or 0F1 hypergeometric representation into Hankel (Bessel of third kind) functions
Calling Sequence
Parameters
Description
Examples
convert(expr, Hankel)
expr
-
Maple expression, equation, or a set or list of them
convert/Hankel converts, when possible, special functions admitting a 1F1 or 0F1 hypergeometric representation into Hankel (Bessel of third kind) functions. The Hankel functions are
FunctionAdvisor( Hankel );
The 2 functions in the "Hankel" class are:
HankelH1,HankelH2
BesselJ⁡a,z
convert⁡,Hankel
HankelH1⁡a,z2+HankelH2⁡a,z2
BesselK⁡a,z
I2⁢−za2⁢ⅇI⁢a⁢π+I⁢za2⁢ⅇ2⁢I⁢a⁢π⁢HankelH1⁡a,I⁢z+I⁢za2−za2⁢ⅇI⁢a⁢π⁢HankelH2⁡a,I⁢z⁢πI⁢za⁢za⁢ⅇ2⁢I⁢a⁢π−1
KummerU⁡a+12,2⁢a+1,z
π⁢ⅇz2⁢−ⅇI⁢a⁢π⁢I2⁢za⁢22⁢a+1z2⁢a⁢2a+2aI2⁢za⁢2−1+2⁢a⁢HankelH1⁡a,I2⁢z+−I2⁢za⁢22⁢a+1z2⁢a⁢ⅇI⁢a⁢π⁢2a+2aI2⁢za⁢2−1+2⁢a⁢HankelH2⁡a,I2⁢z8⁢sin⁡π⁢a+1
LaguerreL⁡−12−a,2⁢a,2⁢I⁢z−WhittakerM⁡0,a,2⁢I⁢z
−12+a−12−a⁢ⅇI⁢z⁢Γ⁡a+1⁢HankelH1⁡a,−z+HankelH2⁡a,−z⁢2a2⁢−za−2⁢I⁢za+12⁢Γ⁡a+1⁢HankelH1⁡a,−z+HankelH2⁡a,−z⁢2a2⁢−za
MeijerG⁡,,12⁢a,−12⁢a,z
MeijerG⁡,,a2,−a2,z
za2⁢HankelH1⁡a,−2⁢z+HankelH2⁡a,−2⁢z⁢2a2⁢−2⁢za
See Also
convert
convert/to_special_function
FunctionAdvisor
Download Help Document