convert/Kelvin
convert special functions admitting 1F1 or 0F1 hypergeometric representation into Kelvin functions
Calling Sequence
Parameters
Description
Examples
convert(expr, Kelvin)
expr
-
Maple expression, equation, or a set or list of them
convert/Kelvin converts, when possible, special functions admitting a 1F1 or 0F1 hypergeometric representation into Kelvin functions. The Kelvin functions are
FunctionAdvisor( Kelvin );
The 6 functions in the "Kelvin" class are:
KelvinBei,KelvinBer,KelvinHei,KelvinHer,KelvinKei,KelvinKer
AiryAi⁡z
convert⁡,Kelvinassuming0<ℜ⁡z
3⁢z⁢KelvinKer⁡13,13−I3⁢z32⁢2+I⁢KelvinKei⁡13,13−I3⁢z32⁢2⁢3+I6⁢π
Consider the following expression
sol≔y⁡z=_C1⁢KummerM⁡12+a,1+2⁢a,z+_C2⁢KummerU⁡12+a,1+2⁢a,z
where sol is the solution to the following linear differential equation (see dpolyform)
PDEtoolsdpolyform⁡sol,no_Fn
ⅆ2ⅆz2y⁡z=−2⁢a+z−1⁢ⅆⅆzy⁡zz+1+2⁢a⁢y⁡z2⁢zwhere
sol can be rewritten using Kelvin functions
convert⁡sol,Kelvin
y⁡z=c__1⁢ⅇz2⁢Γ⁡1+a⁢KelvinBer⁡a,14−I4⁢z⁢2+I⁢KelvinBei⁡a,14−I4⁢z⁢2⁢2aI2⁢za+c__2⁢π⁢ⅇz2⁢2a⁢KelvinBer⁡a,14−I4⁢z⁢2I2⁢za⁢2−1+2⁢a−I2⁢za⁢21+2⁢a⁢KelvinBer⁡−a,14−I4⁢z⁢2z2⁢a⁢2a−I⁢KelvinBei⁡−a,14−I4⁢z⁢2⁢I2⁢za⁢21+2⁢az2⁢a⁢2a+I⁢KelvinBei⁡a,14−I4⁢z⁢2⁢2aI2⁢za⁢2−1+2⁢a4⁢sin⁡π⁢1+a
collect⁡,KelvinBer,KelvinBei,simplify
y⁡z=ⅇz2⁢I⁢z−a⁢2⁢4a⁢c__1⁢Γ⁡1+a−c__2⁢π⁢csc⁡π⁢a⁢KelvinBer⁡a,14−I4⁢z⁢22+c__2⁢z−2⁢a⁢π⁢I⁢za⁢ⅇz2⁢csc⁡π⁢a⁢KelvinBer⁡−a,14−I4⁢z⁢22+I⁢I⁢z−a⁢ⅇz2⁢4a⁢c__1⁢Γ⁡1+a−c__2⁢π⁢csc⁡π⁢a2⁢KelvinBei⁡a,14−I4⁢z⁢2+I⁢c__2⁢z−2⁢a⁢π⁢I⁢za⁢ⅇz2⁢csc⁡π⁢a⁢KelvinBei⁡−a,14−I4⁢z⁢22
See Also
convert
convert/to_special_function
FunctionAdvisor
Download Help Document