sumtools
hyperrecursion
Zeilberger-Koepf's hyperrecursion algorithm
Calling Sequence
Parameters
Description
Examples
hyperrecursion(U, L, z, s(n))
U, L
-
lists of the upper and lower parameters
z
evaluation point
n
name, recurrence variable
s
name, recurrence function
This function is an implementation of Koepf's extension of Zeilberger's algorithm, calculating a (downward) recurrence equation for the sum
∑k⁡hyperterm⁡U,L,k
the sum to be taken over all integers k, with respect to n. Here, U and L denote the lists of upper and lower parameters, and z is the evaluation point. The arguments of U and L are assumed to be rational-linear with respect to n. The resulting expression equals zero.
The output is a recurrence which equals zero. The recurrence is output as a function of n, the recurrence variable, and s⁡n,s⁡n−1,....
The command with(sumtools,hyperrecursion) allows the use of the abbreviated form of this command.
with⁡sumtools:
hyperrecursion⁡−n,a,b,1,f⁡n
−n+a−b+1⁢f⁡n−1+b+n−1⁢f⁡n
Dougall's identity
hyperrecursion⁡a,1+a2,b,c,d,1+2⁢a−b−c−d+n,−n,a2,1+a−b,1+a−c,1+a−d,1+a−1+2⁢a−b−c−d+n,1+a+n,1,s⁡n
−a+n⁢a−c−d+n⁢a−b−d+n⁢a−b−c+n⁢s⁡n−1+a−d+n⁢a−c+n⁢a−b+n⁢a−b−c−d+n⁢s⁡n
hyperrecursion⁡a+12,a,b,1−b,−n,2⁢a+13+n,a2+1,12,2⁢a−b+33,2⁢a+b+23,−3⁢n,2⁢a+1+3⁢n,a2,1,s⁡n
b−2+3⁢n⁢b+1−3⁢n⁢2⁢a−1+3⁢n⁢2⁢a+3⁢n⁢s⁡n−1+3⁢n−1⁢3⁢n−2⁢3⁢n−1+b+2⁢a⁢3⁢n−b+2⁢a⁢s⁡n
See Also
sum
sumtools[gosper]
SumTools[Hypergeometric][Zeilberger]
sumtools[hypersum]
sumtools[hyperterm]
sumtools[sumrecursion]
Download Help Document