sumtools
hypersum
Zeilberger-Koepf's hypersum algorithm
Hypersum
Zeilberger-Koepf's algorithm
Calling Sequence
Parameters
Description
Examples
hypersum(U, L, z, n)
Hypersum(U, L, z, n)
U, L
-
lists of the upper and lower parameters
z
evaluation point
n
name, recurrence variable
This function is an implementation of Zeilberger-Koepf's algorithm, and calculates a closed form for the sum
∑k⁡hyperterm⁡U,L,k
the sum to be taken over all integers k, with respect to n, whenever an extension of Zeilberger's algorithm gives a suitable recurrence equation. Here, U and L denote the lists of upper and lower parameters, and z is the evaluation point. The arguments of U and L are assumed to be rational-linear with respect to n. The procedure Hypersum is the corresponding inert form which remains unevaluated.
The command with(sumtools,hypersum) allows the use of the abbreviated form of this command.
with⁡sumtools:
Dougall's identity
hypersum⁡a,1+a2,b,c,d,1+2⁢a−b−c−d+n,−n,a2,1+a−b,1+a−c,1+a−d,1+a−1+2⁢a−b−c−d+n,1+a+n,1,n
pochhammer⁡a+1,n⁢pochhammer⁡a−b−c+1,n⁢pochhammer⁡a−b−d+1,n⁢pochhammer⁡a−c−d+1,npochhammer⁡1+a−b,n⁢pochhammer⁡1+a−c,n⁢pochhammer⁡1+a−d,n⁢pochhammer⁡a−b−c−d+1,n
Hypersum⁡a,1+a2,b,c,d,1+2⁢a−b−c−d+n,−n,a2,1+a−b,1+a−c,1+a−d,1+a−1+2⁢a−b−c−d+n,1+a+n,1,n
Hyperterm⁡1,a+1,a−b−c+1,a−b−d+1,a−c−d+1,1+a−b,1+a−c,1+a−d,a−b−c−d+1,1,n
Andrews
Hypersum⁡−n,n+3⁢a,a,32⁢a,3⁢a+12,34,n
Hyperterm⁡1,23,13,23+a,a+13,1,n3irem⁡n,3=00irem⁡n,3=10irem⁡n,3=2
See Also
sum
SumTools[Hypergeometric][KoepfZeilberger]
Download Help Document