HeunD - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


HeunD

The Heun Doubleconfluent function

HeunDPrime

The derivative of the Heun Doubleconfluent function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

HeunD(α, β, γ, δ, z)

HeunDPrime(α, β, γ, δ, z)

Parameters

α

-

algebraic expression

β

-

algebraic expression

γ

-

algebraic expression

δ

-

algebraic expression

z

-

algebraic expression

Description

• 

The HeunD function is the solution of the Heun Doubleconfluent equation. Following the first reference (at the end), the equation and the conditions at the origin satisfied by HeunD are

FunctionAdvisor(definition, HeunD);

HeunDα,β,γ,δ,z=DESolⅆ2ⅆz2_Yzαz42z5+4z3α2zⅆⅆz_Yzz13z+13z2β+γ2αzδ_Yzz13z+13,_Yz,_Y0=1,D_Y0=0

(1)
• 

The HeunD(α,β,γ,z) function is a local solution to Heun's Doubleconfluent equation, computed as a standard power series expansion around the origin, a regular point. Because of the presence of two irregular singularities located at -1 and 1, the radius of convergence of this series is z<1. An analytic continuation of HeunD outside the unit circle is obtained through the identity

FunctionAdvisor(identities, HeunD);

HeunDα&comma;β&comma;γ&comma;δ&comma;z=HeunDα&comma;δ&comma;γ&comma;β&comma;1z

(2)
• 

The Doubleconfluent Heun Equation (DHE) above is obtained from the Confluent Heun Equation (CHE) through an additional confluence process, with the two regular singularities of the CHE coalescing into one irregular singularity at the origin. The resulting Heun equation, with two irregular singularities at 0 and , is further transformed using x -> x+1x1, relocating these singularities symmetrically at -1 and 1, leaving the origin as a regular point. The Doubleconfluent equation, thus, has a structure of singularities that can be transformed into that of the 0F1 hypergeometric equation and particular cases of HeunD are related to the Bessel functions.

Examples

Heun's Doubleconfluent equation,

DHEdiffyz&comma;`$`z&comma;2=2z5+4z3+4αz42z4αz13z+13diffyz&comma;z+4β2α24δ4γ+1z2+8βαγz4γ+4δ4β+2α21z13z+13yz

DHE&DifferentialD;2&DifferentialD;z2yz=4αz42z5+4z34α2z&DifferentialD;&DifferentialD;zyzz13z+13+2α24β4δ4γ+1z2+8βαγz4γ+4δ4β+2α21yzz13z+13

(3)

can be transformed into another version of itself, that is, an equation with two irregular singularities located at -1 and 1 through transformations of the form

z=σ+1t+σ1σ1t+σ+1,yz=expκt+1t1+ρt+1t1ut

z=σ+1t+σ1σ1t+σ+1,yz=&ExponentialE;κt+1t1+ρt1t+1ut

(4)

where t&comma;ut are new variables, and σ4=1, κ2=σεακ4. Under this transformation, the HeunD parameters transform according to α = 2κσεα4, β = εγ+β+δ16σ, γ = εγ+β+δσ16 and δ = βδε2α242+14, where ε2=1.

These transformations form a group of 32 elements and imply on identities, among which you have

FunctionAdvisoridentities&comma;HeunD

HeunDα&comma;β&comma;γ&comma;δ&comma;z=HeunDα&comma;δ&comma;γ&comma;β&comma;1z

(5)

References

  

Decarreau, A.; Dumont-Lepage, M.C.; Maroni, P.; Robert, A.; and Ronveaux, A. "Formes Canoniques de Equations confluentes de l'equation de Heun". Annales de la Societe Scientifique de Bruxelles. Vol. 92 I-II, (1978): 53-78.

  

Ronveaux, A. ed. Heun's Differential Equations. Oxford University Press, 1995.

  

Slavyanov, S.Y., and Lay, W. Special Functions, A Unified Theory Based on Singularities. Oxford Mathematical Monographs, 2000.

See Also

FunctionAdvisor

Heun

HeunB

HeunC

HeunG

HeunT

hypergeom