HeunT - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


HeunT

The Heun Triconfluent function

HeunTPrime

The derivative of the Heun Triconfluent function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

HeunT(α, β, γ, z)

HeunTPrime(α, β, γ, z)

Parameters

α

-

algebraic expression

β

-

algebraic expression

γ

-

algebraic expression

z

-

algebraic expression

Description

• 

The HeunT function is the solution of the Heun Triconfluent equation. Following the first reference (at the end), the equation and the conditions at the origin satisfied by HeunT are

FunctionAdvisor(definition, HeunT);

HeunTα,β,γ,z=DESolⅆ2ⅆz2_Yz3z2+γⅆⅆz_Yzβ+3zα_Yz,_Yz,_Y0=1,D_Y0=0

(1)
• 

The HeunT(α,β,γ,z) function is a local solution to Heun's Triconfluent equation, computed as a standard power series expansion around the origin, a regular point. Because the single singularity is located at , this series converges in the whole complex plane.

• 

The Triconfluent Heun Equation (THE) above is obtained from the Doubleconfluent Heun Equation (DHE) through a confluence process, that is, a process where two singularities coalesce, performed by redefining parameters and taking limits. In this case the two irregular singularities of the DHE are coalesced into one irregular singularity at . The resulting Heun Triconfluent equation, thus, has the structure of singularities f of the 0F1 hypergeometric equation and so can be related to the Airy functions.

• 

A special case happens when in HeunT(α,β,γ,z), the second parameter satisfies β=3n+1, where n is a positive integer. In this case the nth+1, nth+2 and nth+3 coefficients form a polynomial system for the remaining parameters α and γ; when this system is identically satisfied all the subsequent coefficients cancel too and the series truncates, resulting in a polynomial form of degree n for HeunT. Remark: for n=0 this situation leads to a constant, for n=1 HeunT will also be a constant since its series expansion satisfies HeunT'  at 0 = 0 and for n=2 the polynomial system for α and γ is inconsistent. So the non-trivial polynomial forms of HeunT are of degree 3n.

Examples

Heun's Triconfluent equation,

THEdiffyz,z,z=3z2+γdiffyz,z+3βzαyz

THEⅆ2ⅆz2yz=3z2+γⅆⅆzyz+3βzαyz

(2)

can be transformed into another version of itself, that is, an equation with one regular and one irregular singularities respectively located at 0 and  through transformations of the form

z=κt,yz=exp12tκ1κ2+κ+1γ+t2κ3ut

z=κt,yz=ⅇtκ1κ2+κ+1t2+γ2κ3ut

(3)

where t,ut are new variables and κ6=1. Under this transformation, the HeunT parameters transform according to α -> ακ2, β -> βκ3, γ -> γκ4. These transformations form a group of six elements and imply on identities, among which you have

FunctionAdvisoridentities,HeunT

HeunTα,β,γ,z=HeunTjα,β,j2γ,jz,j3=1,HeunTα,β,γ,z=HeunTα,β,γ,zⅇz3,γ=0

(4)

When, in HeunT(α,β,γ,z), β=3n+1, where n is a positive integer, the nth+1, nth+2 and nth+3 coefficients form a polynomial system for the remaining parameters α and γ. When this system is identically satisfied all the subsequent coefficients cancel too and the series truncates, resulting in a polynomial form of degree n for HeunT. For example, this is the necessary condition for a polynomial form

HeunTα,3n+3,γ,z

HeunTα,3n+3,γ,z

(5)

Considering the first non-trivial case, for n=3, the function is

HTsubsn=3,

HTHeunTα,12,γ,z

(6)

So the coefficients of zm for m equal to 4, 5, and 6 in the series expansion are

QsimplifyseriesHT,z,7,size

Q112αz2+γα632z3+124α2124γ2α38γz41120γα+9γ22αz5+α3720+γ2α2240+γ4+27γα720γ380z6+Oz7

(7)

c4,c5,c6coeffQ,z,4,coeffQ,z,5,coeffQ,z,6

c4,c5,c6124α2124γ2α38γ,γα+9γ22α120,α3720+γ2α2240+γ4+27γα720γ380

(8)

solving for α and γ, requesting from solve to return using RootOf, you have

_EnvExplicitfalse

_EnvExplicitfalse

(9)

subsga=γ,solvesubsγ=ga,c4,c5,c6,α,ga

α=0,γ=0,α=RootOf_Z3+3622,γ=RootOf_Z3+36

(10)

substituting for instance the first of these two solutions in HT we have

HT_polynomialsubs1,HT

HT_polynomialHeunT0,12,0,z

(11)

When the function admits a polynomial form, as is the case of HT_polynomial by construction, to obtain the actual polynomial of degree n (in this case n=3) use

eval,HeunT=HeunT:-SpecialValues:-Polynomial

13z32

(12)

References

  

Decarreau, A.; Dumont-Lepage, M.C.; Maroni, P.; Robert, A.; and Ronveaux, A. "Formes Canoniques de Equations confluentes de l'equation de Heun". Annales de la Societe Scientifique de Bruxelles. Vol. 92 I-II, (1978): 53-78.

  

Ronveaux, A. ed. Heun's Differential Equations. Oxford University Press, 1995.

  

Slavyanov, S.Y., and Lay, W. Special Functions, A Unified Theory Based on Singularities. Oxford Mathematical Monographs, 2000.

See Also

FunctionAdvisor

Heun

HeunB

HeunC

HeunD

HeunG

hypergeom