BesselI, BesselJ
The Bessel functions of the first kind
BesselK, BesselY
The Bessel functions of the second kind
HankelH1, HankelH2
The Hankel functions (Bessel functions of the third kind)
Calling Sequence
Parameters
Description
Examples
BesselI(v, x)
BesselJ(v, x)
BesselK(v, x)
BesselY(v, x)
HankelH1(v, x)
HankelH2(v, x)
v
-
algebraic expression (the order or index)
x
algebraic expression (the argument)
BesselJ and BesselY are the Bessel functions of the first and second kinds, respectively. They satisfy Bessel's equation:
x2⁢y''+x⁢y'+−v2+x2⁢y=0
BesselI and BesselK are the modified Bessel functions of the first and second kinds, respectively. They satisfy the modified Bessel equation:
x2⁢y''+x⁢y'−v2+x2⁢y=0
HankelH1 and HankelH2 are the Hankel functions, also known as the Bessel functions of the third kind. They also satisfy Bessel's equation, and are related to BesselJ and BesselY by
HankelH1⁡v,x=BesselJ⁡v,x+I⁢BesselY⁡v,x
HankelH2⁡v,x=BesselJ⁡v,x−I⁢BesselY⁡v,x
BesselJ⁡0,2
evalf⁡
0.2238907791
BesselK⁡1,−3.
−0.04015643113−12.41987883⁢I
BesselI⁡0,0
1
BesselY⁡1.5+I,3.5−I
0.9566518512−1.465483431⁢I
series⁡BesselJ⁡3,x,x
148⁢x3−1768⁢x5+O⁡x7
diff⁡BesselJ⁡v,x,x
−BesselJ⁡v+1,x+v⁢BesselJ⁡v,xx
HankelH1⁡2.5,3.7+I
0.1809260572−0.08706107529⁢I
diff⁡HankelH2⁡v,x2,x
2⁢−HankelH2⁡v+1,x2+v⁢HankelH2⁡v,x2x2⁢x
convert⁡HankelH2⁡v,x,Bessel
BesselJ⁡v,x−I⁢BesselY⁡v,x
convert⁡AiryAi⁡x,Bessel
−x⁢BesselI⁡13,2⁢x333⁢x316+x316⁢BesselI⁡−13,2⁢x333
convert⁡KelvinKer⁡v,x,BesselK
BesselK⁡v,12+I2⁢x⁢2+ⅇI2⁢v⁢π2⁢BesselK⁡v,12−I2⁢x⁢22⁢ⅇI2⁢v⁢π
See Also
Airy
Anger
BesselZeros
convert/Bessel
inifcns
inttrans[hankel]
Kelvin
Struve
Download Help Document