KelvinBer, KelvinBei
Kelvin functions ber and bei
KelvinKer, KelvinKei
Kelvin functions ker and kei
KelvinHer, KelvinHei
Kelvin functions her and hei
Calling Sequence
Parameters
Description
Examples
References
KelvinBer(v, x)
KelvinBei(v, x)
KelvinKer(v, x)
KelvinKei(v, x)
KelvinHer(v, x)
KelvinHei(v, x)
v
-
algebraic expression (the order or index)
x
algebraic expression (the argument)
The Kelvin functions (sometimes known as the Thomson functions) are defined by the following equations:
KelvinBer⁡v,x+I⁢KelvinBei⁡v,x=BesselJ⁡v,x⁢−12⁢2+12⁢I⁢2
KelvinBer⁡v,x−I⁢KelvinBei⁡v,x=BesselJ⁡v,x⁢−12⁢2−12⁢I⁢2
KelvinKer⁡v,x+I⁢KelvinKei⁡v,x=ⅇ−12⁢I⁢v⁢π⁢BesselK⁡v,x⁢12⁢2+12⁢I⁢2
KelvinKer⁡v,x−I⁢KelvinKei⁡v,x=ⅇ12⁢I⁢v⁢π⁢BesselK⁡v,x⁢12⁢2−12⁢I⁢2
KelvinHer⁡v,x+I⁢KelvinHei⁡v,x=HankelH1⁡v,x⁢−12⁢2+12⁢I⁢2
KelvinHer⁡v,x−I⁢KelvinHei⁡v,x=HankelH2⁡v,x⁢−12⁢2−12⁢I⁢2
The Kelvin functions are all real valued for real x and positive v.
KelvinBer⁡0,0
1
KelvinKei⁡1.5−I,2.6+3⁢I
−0.08160376508−0.03651099032⁢I
series⁡KelvinHer⁡1,x,x,3
−2π⁢x−1+14⁢2⁢−ln⁡−1−I⁢x−ln⁡−1+I⁢x−2⁢γ+3⁢ln⁡2+I⁢ln⁡−1−I⁢x−I⁢ln⁡−1+I⁢x+1−ππ⁢x+O⁡x3
convert⁡KelvinBei⁡v,x,BesselJ
I2⁢BesselJ⁡v,−12−I2⁢x⁢2−BesselJ⁡v,−12+I2⁢x⁢2
diff⁡KelvinHei⁡v,x,x
2⁢KelvinHei⁡v+1,x−KelvinHer⁡v+1,x2+v⁢KelvinHei⁡v,xx
convert⁡KelvinBer⁡v,x,BesselJ
BesselJ⁡v,−12−I2⁢x⁢22+BesselJ⁡v,−12+I2⁢x⁢22
convert⁡KelvinBei⁡v,x,Bessel
convert⁡KelvinKer⁡v,x,BesselK
BesselK⁡v,12+I2⁢x⁢2+ⅇI2⁢v⁢π2⁢BesselK⁡v,12−I2⁢x⁢22⁢ⅇI2⁢v⁢π
convert⁡KelvinHer⁡v,x,Hankel
HankelH1⁡v,−12+I2⁢x⁢22+HankelH2⁡v,−12−I2⁢x⁢22
Abramowitz, M., and Stegun, I. Handbook of Mathematical Functions, Section 9.9. Washington: National Bureau of Standards Applied Mathematics, 1964.
Erdelyi, A., ed. Higher Transcendental Functions, Section 7.2.3. New York: McGraw-Hill, 1953.
See Also
Airy
Anger
Bessel
convert/Bessel
inifcns
Struve
Download Help Document