Hyperbolic - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ComplexBox

  

Hyperbolic

  

hyperbolic functions for ComplexBox objects

  

sinh

  

compute the hyperbolic sine of a ComplexBox object

  

cosh

  

compute the hyperbolic cosine of a ComplexBox object

  

tanh

  

compute the hyperbolic tangent of a ComplexBox object

  

sech

  

compute the hyperbolic secant of a ComplexBox object

  

csch

  

compute the hyperbolic cosecant of a ComplexBox object

  

coth

  

compute the hyperbolic cotangent of a ComplexBox object

  

arcsinh

  

compute the inverse hyperbolic sine of a ComplexBox object

  

arccosh

  

compute the inverse hyperbolic cosine of a ComplexBox object

  

arctanh

  

compute the inverse hyperbolic tangent of a ComplexBox object

  

sinhcosh

  

compute simultaneously the hyperbolic sine and hyperbolic cosine of a ComplexBox object

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

sinh( b )

cosh( b )

tanh( b )

sech( b )

csch( b )

coth( b )

arcsinh( b )

arccosh( b )

arctanh( b )

sinhcosh( b )

Parameters

b

-

ComplexBox object

precopt

-

(optional) equation of the form precision = n, where n is a positive integer

Description

• 

These are the hyperbolic functions defined for ComplexBox objects. Apart from sinhcosh, which returns an expression sequence of two ComplexBox objects, each of these computes a ComplexBox representing the value of the named function on the values in the ComplexBox input.

sinh

cosh

tanh

sech

csch

coth

arcsinh

arccosh

arctanh

sinhcosh

 

 

• 

Use the 'precision' = n option to control the precision used in these methods. For more details on precision, see BoxPrecision.

Examples

aComplexBox0.34+1.1I

aComplexBox: [0.34 +/- 2.91038e-11]+[1.1 +/- 1.16415e-10]I

(1)

bComplexBox2.34.4I

bComplexBox: [2.3 +/- 2.32831e-10]+[-4.4 +/- 4.65661e-10]I

(2)

sinhb

ComplexBox: [-1.51729 +/- 2.9924e-09]+[4.79343 +/- 3.07814e-09]I

(3)

coshb

ComplexBox: [-1.5481 +/- 3.04039e-09]+[4.69802 +/- 3.05774e-09]I

(4)

tanhb

ComplexBox: [1.01637 +/- 1.36325e-10]+[-0.0119527 +/- 2.29125e-11]I

(5)

sechb

ComplexBox: [-0.0632704 +/- 1.31738e-10]+[-0.192006 +/- 1.39835e-10]I

(6)

cschb

ComplexBox: [-0.0600215 +/- 1.19315e-10]+[-0.18962 +/- 1.16933e-10]I

(7)

cothb

ComplexBox: [0.983758 +/- 7.77339e-11]+[0.0115692 +/- 2.25103e-11]I

(8)

arcsinhb

ComplexBox: [2.2898 +/- 2.36325e-08]+[-1.08066 +/- 2.28804e-08]I

(9)

arccoshb

ComplexBox: [2.30138 +/- 5.87225e-10]+[-1.09732 +/- 4.70888e-10]I

(10)

arctanha

ComplexBox: [0.150593 +/- 2.42726e-10]+[0.858865 +/- 3.60329e-10]I

(11)

Unlike the other functions defined above, the sinhcosh( b ) command returns an expression sequence of two ComplexBox objects representing, respectively, the values sinh( b ) and cosh( b ) of the ComplexBox argument b.

sinhcoshb

ComplexBox: [-1.51729 +/- 2.9924e-09]+[4.79343 +/- 3.07814e-09]I,ComplexBox: [-1.5481 +/- 3.04039e-09]+[4.69802 +/- 3.05774e-09]I

(12)

Compatibility

• 

The ComplexBox[Hyperbolic], ComplexBox:-sinh, ComplexBox:-cosh, ComplexBox:-tanh, ComplexBox:-sech, ComplexBox:-csch, ComplexBox:-coth, ComplexBox:-arcsinh, ComplexBox:-arccosh, ComplexBox:-arctanh and ComplexBox:-sinhcosh commands were introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

ComplexBox

ComplexBox[Circular]

RealBox

RealBox[Hyperbolic]