ComplexBox
Hyperbolic
hyperbolic functions for ComplexBox objects
sinh
compute the hyperbolic sine of a ComplexBox object
cosh
compute the hyperbolic cosine of a ComplexBox object
tanh
compute the hyperbolic tangent of a ComplexBox object
sech
compute the hyperbolic secant of a ComplexBox object
csch
compute the hyperbolic cosecant of a ComplexBox object
coth
compute the hyperbolic cotangent of a ComplexBox object
arcsinh
compute the inverse hyperbolic sine of a ComplexBox object
arccosh
compute the inverse hyperbolic cosine of a ComplexBox object
arctanh
compute the inverse hyperbolic tangent of a ComplexBox object
sinhcosh
compute simultaneously the hyperbolic sine and hyperbolic cosine of a ComplexBox object
Calling Sequence
Parameters
Description
Examples
Compatibility
sinh( b )
cosh( b )
tanh( b )
sech( b )
csch( b )
coth( b )
arcsinh( b )
arccosh( b )
arctanh( b )
sinhcosh( b )
b
-
ComplexBox object
precopt
(optional) equation of the form precision = n, where n is a positive integer
These are the hyperbolic functions defined for ComplexBox objects. Apart from sinhcosh, which returns an expression sequence of two ComplexBox objects, each of these computes a ComplexBox representing the value of the named function on the values in the ComplexBox input.
Use the 'precision' = n option to control the precision used in these methods. For more details on precision, see BoxPrecision.
a≔ComplexBox⁡0.34+1.1⁢I
a≔⟨ComplexBox: [0.34 +/- 2.91038e-11]+[1.1 +/- 1.16415e-10]⋅I⟩
b≔ComplexBox⁡2.3−4.4⁢I
b≔⟨ComplexBox: [2.3 +/- 2.32831e-10]+[-4.4 +/- 4.65661e-10]⋅I⟩
sinh⁡b
⟨ComplexBox: [-1.51729 +/- 2.9924e-09]+[4.79343 +/- 3.07814e-09]⋅I⟩
cosh⁡b
⟨ComplexBox: [-1.5481 +/- 3.04039e-09]+[4.69802 +/- 3.05774e-09]⋅I⟩
tanh⁡b
⟨ComplexBox: [1.01637 +/- 1.36325e-10]+[-0.0119527 +/- 2.29125e-11]⋅I⟩
sech⁡b
⟨ComplexBox: [-0.0632704 +/- 1.31738e-10]+[-0.192006 +/- 1.39835e-10]⋅I⟩
csch⁡b
⟨ComplexBox: [-0.0600215 +/- 1.19315e-10]+[-0.18962 +/- 1.16933e-10]⋅I⟩
coth⁡b
⟨ComplexBox: [0.983758 +/- 7.77339e-11]+[0.0115692 +/- 2.25103e-11]⋅I⟩
arcsinh⁡b
⟨ComplexBox: [2.2898 +/- 2.36325e-08]+[-1.08066 +/- 2.28804e-08]⋅I⟩
arccosh⁡b
⟨ComplexBox: [2.30138 +/- 5.87225e-10]+[-1.09732 +/- 4.70888e-10]⋅I⟩
arctanh⁡a
⟨ComplexBox: [0.150593 +/- 2.42726e-10]+[0.858865 +/- 3.60329e-10]⋅I⟩
Unlike the other functions defined above, the sinhcosh( b ) command returns an expression sequence of two ComplexBox objects representing, respectively, the values sinh( b ) and cosh( b ) of the ComplexBox argument b.
sinhcosh⁡b
⟨ComplexBox: [-1.51729 +/- 2.9924e-09]+[4.79343 +/- 3.07814e-09]⋅I⟩,⟨ComplexBox: [-1.5481 +/- 3.04039e-09]+[4.69802 +/- 3.05774e-09]⋅I⟩
The ComplexBox[Hyperbolic], ComplexBox:-sinh, ComplexBox:-cosh, ComplexBox:-tanh, ComplexBox:-sech, ComplexBox:-csch, ComplexBox:-coth, ComplexBox:-arcsinh, ComplexBox:-arccosh, ComplexBox:-arctanh and ComplexBox:-sinhcosh commands were introduced in Maple 2022.
For more information on Maple 2022 changes, see Updates in Maple 2022.
See Also
ComplexBox[Circular]
RealBox
RealBox[Hyperbolic]
Download Help Document