ComplexBox
Hypergeom
hypergeometric functions for ComplexBox objects
hypergeom
compute the hypergeometric function of a ComplexBox object
KummerU
compute the Kummer U function of a ComplexBox object
LegendreP
compute the Legendre P function of a ComplexBox object
LegendreQ
compute the Legendre Q function of a ComplexBox object
Calling Sequence
Parameters
Description
Examples
Compatibility
hypergeom( aL, bL, c )
KummerU( a, b, c )
LegendreP( a, b )
LegendreP( a, b, c )
LegendreQ( a, b )
LegendreQ( a, b, c )
a
-
ComplexBox object
b
c
n
aL
list of ComplexBox objects
bL
precopt
(optional) equation of the form precision = n, where n is a positive integer
Several hypergeometric functions are defined for ComplexBox objects:
They override the standard Maple procedures for ComplexBox objects, or certain special cases of the Maple hypergeom procedure.
Use the 'precision' = n option to control the precision used in these methods. For more details on precision, see BoxPrecision.
hypergeom⁡,ComplexBox⁡2,ComplexBox⁡2.3
⟨ComplexBox: [2.68583 +/- 1.856e-09]+[0 +/- 0]⋅I⟩
a≔ComplexBox⁡I−1.1
a≔⟨ComplexBox: [-1.1 +/- 1.16415e-10]+[1 +/- 0]⋅I⟩
b≔ComplexBox⁡2.3+4.7⁢I
b≔⟨ComplexBox: [2.3 +/- 2.32831e-10]+[4.7 +/- 4.65661e-10]⋅I⟩
c≔ComplexBox⁡0.423⁢I
c≔⟨ComplexBox: [0 +/- 0]+[0.423 +/- 2.91038e-11]⋅I⟩
n≔ComplexBox⁡5
n≔⟨ComplexBox: [5 +/- 0]+[0 +/- 0]⋅I⟩
t≔ComplexBox⁡2.0+I
t≔⟨ComplexBox: [2 +/- 0]+[1 +/- 0]⋅I⟩
hypergeom⁡1,2,3,4,b
⟨ComplexBox: [0.609955 +/- 2.15311e-09]+[0.905206 +/- 2.53906e-09]⋅I⟩
KummerU⁡a,c,b
⟨ComplexBox: [19.6016 +/- 9.82046e-07]+[-9.57351 +/- 9.80962e-07]⋅I⟩
LegendreP⁡a,b
⟨ComplexBox: [-0.135347 +/- 1.31999e-07]+[-2.14748 +/- 1.32695e-07]⋅I⟩
LegendreP⁡n,a,b
⟨ComplexBox: [1643.53 +/- 0.000122696]+[4439.07 +/- 0.000124512]⋅I⟩
LegendreQ⁡ComplexBox⁡2,ComplexBox⁡I−1.1
⟨ComplexBox: [0.0335524 +/- 3.42359e-10]+[-0.020433 +/- 3.44947e-10]⋅I⟩
The ComplexBox[Hypergeom], ComplexBox:-hypergeom, ComplexBox:-KummerU, ComplexBox:-LegendreP and ComplexBox:-LegendreQ commands were introduced in Maple 2022.
For more information on Maple 2022 changes, see Updates in Maple 2022.
See Also
ComplexBox[Special]
RealBox[Special]
Download Help Document