Special - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ComplexBox

  

Special

  

special functions for ComplexBox objects

  

GAMMA

  

compute the GAMMA function of a ComplexBox object

  

lnGAMMA

  

compute the log-GAMMA function of a ComplexBox object

  

rGAMMA

  

compute the reciprocal GAMMA function of a ComplexBox object

  

Psi

  

compute the digamma function of a ComplexBox object

  

Zeta

  

compute the Riemann zeta function of a ComplexBox object

  

Ei

  

compute the exponential integral of a ComplexBox object

  

Si

  

compute the sine integral of a ComplexBox object

  

Ci

  

compute the cosine integral of a ComplexBox object

  

Shi

  

compute the hyperbolic sine integral of a ComplexBox object

  

Chi

  

compute the hyperbolic cosine integral of a ComplexBox object

  

Li

  

compute the logarithmic integral of a ComplexBox object

  

dilog

  

compute the dilogarithm of a ComplexBox object

  

BesselI

  

compute the Bessel I function of a ComplexBox object

  

BesselJ

  

compute the Bessel J function of a ComplexBox object

  

BesselK

  

compute the Bessel K function of a ComplexBox object

  

BesselY

  

compute the Bessel Y function of a ComplexBox object

  

HermiteH

  

compute the Hermite H function of a ComplexBox object

  

ChebyshevT

  

compute the Chebysheve T function of a ComplexBox object

  

ChebyshevU

  

compute the Chebysheve U function of a ComplexBox object

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

GAMMA( b )

lnGAMMA( b )

rGAMMA( b )

Psi( b )

Zeta( b )

Ei( b )

Si( b )

Ci( b )

Shi( b )

Chi( b )

Li( b )

dilog( b )

BesselI( a, b )

BesselJ( a, b )

BesselK( a, b )

BesselY( a, b )

HermiteH( a, b )

ChebyshevT( a, b )

ChebyshevU( a, b )

Parameters

a

-

ComplexBox object

b

-

ComplexBox object

precopt

-

(optional) equation of the form precision = n, where n is a positive integer

Description

• 

The following special functions are defined as methods for ComplexBox objects.

GAMMA

lnGAMMA

rGAMMA

Psi

Zeta

dilog

Ei

Si

Ci

Li

Shi

Chi

BesselI

BesselJ

BesselK

BesselY

HermiteH

 

ChebyshevT

ChebyshevU

 

• 

They override the standard Maple procedures for ComplexBox objects.

• 

Use the 'precision' = n option to control the precision used in these methods. For more details on precision, see BoxPrecision.

Examples

aComplexBox1.1+0.0042I

aComplexBox: [1.1 +/- 1.16415e-10]+[0.0042 +/- 4.54747e-13]I

(1)

bComplexBox0.234+1.1I

bComplexBox: [0.234 +/- 1.45519e-11]+[1.1 +/- 1.16415e-10]I

(2)

Γb

ComplexBox: [0.0713942 +/- 1.07348e-09]+[-0.431724 +/- 1.09114e-09]I

(3)

lnGAMMAb

ComplexBox: [-0.826479 +/- 1.28212e-09]+[-1.40691 +/- 9.81195e-10]I

(4)

rGAMMAb

ComplexBox: [0.372849 +/- 4.17794e-09]+[2.25464 +/- 4.38801e-09]I

(5)

Ψb

ComplexBox: [0.0873849 +/- 5.51771e-09]+[1.82895 +/- 5.60937e-09]I

(6)

ζb

ComplexBox: [0.0970995 +/- 2.56566e-09]+[-0.523928 +/- 2.36614e-09]I

(7)

Note that arblib uses a different definitino for dilog; this has been corrected for in the external code.

dilogb

ComplexBox: [0.360989 +/- 4.07208e-10]+[-1.37139 +/- 3.75221e-10]I

(8)

Eib

ComplexBox: [0.606897 +/- 8.20042e-10]+[2.51553 +/- 1.41704e-09]I

(9)

Sib

ComplexBox: [0.283141 +/- 2.45357e-10]+[1.16541 +/- 1.05364e-09]I

(10)

Cib

ComplexBox: [0.994751 +/- 5.97924e-10]+[1.21965 +/- 3.24355e-10]I

(11)

Lib

ComplexBox: [0.546841 +/- 1.03681e-09]+[2.78435 +/- 1.94495e-09]I

(12)

Shib

ComplexBox: [0.190056 +/- 1.46752e-10]+[1.03758 +/- 6.54464e-10]I

(13)

Chib

ComplexBox: [0.416841 +/- 4.15087e-10]+[1.47794 +/- 2.68439e-10]I

(14)

BesselIa,b

ComplexBox: [0.00590493 +/- 4.76765e-10]+[0.438495 +/- 1.71856e-09]I

(15)

BesselJa,b

ComplexBox: [0.0788022 +/- 6.30557e-10]+[0.571894 +/- 2.38251e-09]I

(16)

BesselKa,b

ComplexBox: [-0.553572 +/- 1.18212e-08]+[-0.972958 +/- 2.68672e-08]I

(17)

BesselYa,b

ComplexBox: [-0.651446 +/- 1.15714e-08]+[0.412322 +/- 1.91601e-08]I

(18)

HermiteHa,b

ComplexBox: [0.138787 +/- 2.82919e-09]+[2.46831 +/- 7.96179e-09]I

(19)

ChebyshevTa,b

ComplexBox: [0.0185476 +/- 1.66058e-09]+[1.25304 +/- 2.96698e-09]I

(20)

ChebyshevUa,b

ComplexBox: [0.141167 +/- 8.53773e-09]+[2.45801 +/- 1.25366e-08]I

(21)

Compatibility

• 

The ComplexBox[Special], ComplexBox:-GAMMA, ComplexBox:-lnGAMMA, ComplexBox:-rGAMMA, ComplexBox:-Psi, ComplexBox:-Zeta, ComplexBox:-Ei, ComplexBox:-Si, ComplexBox:-Ci, ComplexBox:-Shi, ComplexBox:-Chi, ComplexBox:-Li, ComplexBox:-dilog, ComplexBox:-BesselI, ComplexBox:-BesselJ, ComplexBox:-BesselK, ComplexBox:-BesselY, ComplexBox:-HermiteH, ComplexBox:-ChebyshevT and ComplexBox:-ChebyshevU commands were introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

ComplexBox

RealBox

RealBox[Special]