ComplexBox
Special
special functions for ComplexBox objects
GAMMA
compute the GAMMA function of a ComplexBox object
lnGAMMA
compute the log-GAMMA function of a ComplexBox object
rGAMMA
compute the reciprocal GAMMA function of a ComplexBox object
Psi
compute the digamma function of a ComplexBox object
Zeta
compute the Riemann zeta function of a ComplexBox object
Ei
compute the exponential integral of a ComplexBox object
Si
compute the sine integral of a ComplexBox object
Ci
compute the cosine integral of a ComplexBox object
Shi
compute the hyperbolic sine integral of a ComplexBox object
Chi
compute the hyperbolic cosine integral of a ComplexBox object
Li
compute the logarithmic integral of a ComplexBox object
dilog
compute the dilogarithm of a ComplexBox object
BesselI
compute the Bessel I function of a ComplexBox object
BesselJ
compute the Bessel J function of a ComplexBox object
BesselK
compute the Bessel K function of a ComplexBox object
BesselY
compute the Bessel Y function of a ComplexBox object
HermiteH
compute the Hermite H function of a ComplexBox object
ChebyshevT
compute the Chebysheve T function of a ComplexBox object
ChebyshevU
compute the Chebysheve U function of a ComplexBox object
Calling Sequence
Parameters
Description
Examples
Compatibility
GAMMA( b )
lnGAMMA( b )
rGAMMA( b )
Psi( b )
Zeta( b )
Ei( b )
Si( b )
Ci( b )
Shi( b )
Chi( b )
Li( b )
dilog( b )
BesselI( a, b )
BesselJ( a, b )
BesselK( a, b )
BesselY( a, b )
HermiteH( a, b )
ChebyshevT( a, b )
ChebyshevU( a, b )
a
-
ComplexBox object
b
precopt
(optional) equation of the form precision = n, where n is a positive integer
The following special functions are defined as methods for ComplexBox objects.
They override the standard Maple procedures for ComplexBox objects.
Use the 'precision' = n option to control the precision used in these methods. For more details on precision, see BoxPrecision.
a≔ComplexBox⁡1.1+0.0042⁢I
a≔⟨ComplexBox: [1.1 +/- 1.16415e-10]+[0.0042 +/- 4.54747e-13]⋅I⟩
b≔ComplexBox⁡0.234+1.1⁢I
b≔⟨ComplexBox: [0.234 +/- 1.45519e-11]+[1.1 +/- 1.16415e-10]⋅I⟩
Γ⁡b
⟨ComplexBox: [0.0713942 +/- 1.07348e-09]+[-0.431724 +/- 1.09114e-09]⋅I⟩
lnGAMMA⁡b
⟨ComplexBox: [-0.826479 +/- 1.28212e-09]+[-1.40691 +/- 9.81195e-10]⋅I⟩
rGAMMA⁡b
⟨ComplexBox: [0.372849 +/- 4.17794e-09]+[2.25464 +/- 4.38801e-09]⋅I⟩
Ψ⁡b
⟨ComplexBox: [0.0873849 +/- 5.51771e-09]+[1.82895 +/- 5.60937e-09]⋅I⟩
ζ⁡b
⟨ComplexBox: [0.0970995 +/- 2.56566e-09]+[-0.523928 +/- 2.36614e-09]⋅I⟩
Note that arblib uses a different definitino for dilog; this has been corrected for in the external code.
dilog⁡b
⟨ComplexBox: [0.360989 +/- 4.07208e-10]+[-1.37139 +/- 3.75221e-10]⋅I⟩
Ei⁡b
⟨ComplexBox: [0.606897 +/- 8.20042e-10]+[2.51553 +/- 1.41704e-09]⋅I⟩
Si⁡b
⟨ComplexBox: [0.283141 +/- 2.45357e-10]+[1.16541 +/- 1.05364e-09]⋅I⟩
Ci⁡b
⟨ComplexBox: [0.994751 +/- 5.97924e-10]+[1.21965 +/- 3.24355e-10]⋅I⟩
Li⁡b
⟨ComplexBox: [0.546841 +/- 1.03681e-09]+[2.78435 +/- 1.94495e-09]⋅I⟩
Shi⁡b
⟨ComplexBox: [0.190056 +/- 1.46752e-10]+[1.03758 +/- 6.54464e-10]⋅I⟩
Chi⁡b
⟨ComplexBox: [0.416841 +/- 4.15087e-10]+[1.47794 +/- 2.68439e-10]⋅I⟩
BesselI⁡a,b
⟨ComplexBox: [0.00590493 +/- 4.76765e-10]+[0.438495 +/- 1.71856e-09]⋅I⟩
BesselJ⁡a,b
⟨ComplexBox: [0.0788022 +/- 6.30557e-10]+[0.571894 +/- 2.38251e-09]⋅I⟩
BesselK⁡a,b
⟨ComplexBox: [-0.553572 +/- 1.18212e-08]+[-0.972958 +/- 2.68672e-08]⋅I⟩
BesselY⁡a,b
⟨ComplexBox: [-0.651446 +/- 1.15714e-08]+[0.412322 +/- 1.91601e-08]⋅I⟩
HermiteH⁡a,b
⟨ComplexBox: [0.138787 +/- 2.82919e-09]+[2.46831 +/- 7.96179e-09]⋅I⟩
ChebyshevT⁡a,b
⟨ComplexBox: [0.0185476 +/- 1.66058e-09]+[1.25304 +/- 2.96698e-09]⋅I⟩
ChebyshevU⁡a,b
⟨ComplexBox: [0.141167 +/- 8.53773e-09]+[2.45801 +/- 1.25366e-08]⋅I⟩
The ComplexBox[Special], ComplexBox:-GAMMA, ComplexBox:-lnGAMMA, ComplexBox:-rGAMMA, ComplexBox:-Psi, ComplexBox:-Zeta, ComplexBox:-Ei, ComplexBox:-Si, ComplexBox:-Ci, ComplexBox:-Shi, ComplexBox:-Chi, ComplexBox:-Li, ComplexBox:-dilog, ComplexBox:-BesselI, ComplexBox:-BesselJ, ComplexBox:-BesselK, ComplexBox:-BesselY, ComplexBox:-HermiteH, ComplexBox:-ChebyshevT and ComplexBox:-ChebyshevU commands were introduced in Maple 2022.
For more information on Maple 2022 changes, see Updates in Maple 2022.
See Also
RealBox
RealBox[Special]
Download Help Document