CylinderD - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


CylinderU, CylinderV

Parabolic Cylinder Functions

CylinderD

Whittaker's Parabolic Function

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

CylinderU(a, x)

CylinderV(a, x)

CylinderD(a, x)

Parameters

a

-

algebraic expression (the degree)

x

-

algebraic expression (the argument)

Description

• 

CylinderU and CylinderV are the parabolic cylinder functions. They satisfy the first real standard distinct form of the Parabolic Cylinder equation:

y''x24+ay=0

• 

CylinderD and CylinderU are related in the following way:

CylinderDa12,x=CylinderUa,x.

Examples

aaCylinderU3,0

aa2234Γ345π

(1)

evalfaa

0.4650946536

(2)

CylinderU52,x

ⅇx24HermiteH2,x222

(3)

CylinderD3.2,1

−1.819497238

(4)

diffCylinderUa,x,x

xCylinderUa,x2a+12CylinderUa+1,x

(5)

convertCylinderD32,x,CylinderU

CylinderU−2,x

(6)

convertCylinderUa,x+CylinderDb,x,CylinderV

πCylinderVa,xsinaπCylinderVa,xcosaπ2Γa+12+πCylinderVb12,xsinb12πCylinderVb12,xcosb12π2Γb

(7)

seriesCylinderV0,x,x

2342Γ34+12234Γ34πx+196234Γ34x4+1160234Γ34πx5+Ox6

(8)

See Also

convert

diff

evalf

HermiteH

inifcns

series