HermiteH
Hermite function
Calling Sequence
Parameters
Description
Examples
HermiteH(n, x)
n
-
algebraic expression
x
For a non-negative integer n, the HermiteH(n, x) function computes the nth Hermite polynomial.
The Hermite polynomials are orthogonal on the interval −∞,∞ with respect to the weight function w⁡x=ⅇ−x2. They satisfy:
∫−∞∞w⁡t⁢HermiteH⁡n,t⁢HermiteH⁡m,tⅆt={0n≠mπ⁢2n⁢n!n=m
Hermite polynomials satisfy the following recurrence relation:
HermiteH⁡n,x=2⁢x⁢HermiteH⁡n−1,x−2⁢n−1⁢HermiteH⁡n−2,x,for n >= 2
where HermiteH(0,x) = 1 and HermiteH(1,x) = 2*x.
For n different from a non-negative integer, the analytic extension of the Hermite polynomial is given by:
HermiteH⁡n,x=2n⁢π⁢KummerM⁡−12⁢n,12,x2Γ⁡12−12⁢n−2⁢x⁢KummerM⁡12−12⁢n,32,x2Γ⁡−12⁢n
HermiteH⁡3,x
simplify⁡,HermiteH
8⁢x3−12⁢x
HermiteH⁡3.2,2.1
59.58210770
See Also
ChebyshevT
ChebyshevU
expand
GegenbauerC
JacobiP
KummerM
LaguerreL
LegendreP
orthopoly[H]
simplify
Download Help Document