LaguerreL - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LaguerreL

Laguerre function

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

LaguerreL(n, a, x)

Parameters

n

-

algebraic expression

a

-

(optional) nonrational algebraic expression or rational number

x

-

algebraic expression

Description

• 

The LaguerreL function computes the nth Laguerre polynomial.

• 

If the first parameter is a non-negative integer, the LaguerreL function computes the nth generalized Laguerre polynomial with parameter a evaluated at x.

  

If a is not specified, LaguerreL(n, x) computes the nth Laguerre polynomial which is equal to LaguerreL(n, 0, x).

• 

The generalized Laguerre polynomials are orthogonal on the interval 0, with respect to the weight function wx=ⅇxxa. They satisfy:

0wtLaguerreLm,a,tLaguerreLn,a,tⅆt={0nmΓn+a+1n!n=m

• 

For positive integer a, the relationship for LaguerreL(n, a, x) and LaguerreL(n, x) is the following.

LaguerreLn,a,x=−1aaxaLaguerreLn+a,x

  

Some references define the generalized Laguerre polynomials differently than Maple. Denote the alternate function as altLaguerreL(n, a, x). It is defined as follows:

altLaguerreLn,a,x=axaaltLaguerreLn,x

altLaguerreLn,x=n!LaguerreLn,x

  

For general positive integer a, the relationship for Maple's LaguerreL and altLaguerreL is the following.

altLaguerreLn,a,x=−1an!LaguerreLna,a,x

• 

Laguerre polynomials satisfy the following recurrence relation:

LaguerreL0,a,x=1,

LaguerreL1,a,x=x+1+a,

LaguerreLn,a,x=2n+a1xnLaguerreLn1,a,xn+a1nLaguerreLn2,a,x,forn>1.

• 

For n not equal to a non-negative integer, the analytic extension of the Laguerre polynomial is given by:

LaguerreLn,a,x=n+anKummerMn,a+1,x

Examples

LaguerreL3,x

LaguerreL3,x

(1)

simplify,LaguerreL

13x+32x216x3

(2)

LaguerreL3,12,x

LaguerreL3,12,x

(3)

simplify,LaguerreL

516158x+54x216x3

(4)

LaguerreL3.1,1.2

−0.7174310784

(5)

LaguerreL2.1,1.2,3.4

−1.498106063

(6)

Using the alternate definition for the Laguerre polynomials:

altLaguerreLn,a,x−1an!LaguerreLna,a,x:

altLaguerreL3,1,x

6LaguerreL2,1,x

(7)

simplify,LaguerreL

3x2+18x18

(8)

See Also

ChebyshevT

ChebyshevU

GAMMA

GegenbauerC

HermiteH

JacobiP

LegendreP

orthopoly[L]

simplify