GegenbauerC - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GegenbauerC

Gegenbauer (ultraspherical) function

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

GegenbauerC(n, a, x)

Parameters

n

-

algebraic expression

a

-

algebraic expression

x

-

algebraic expression

Description

• 

The GegenbauerC(n, a, x) function computes the nth Gegenbauer polynomial - see Abramowitz and Stegun, Handbook of Mathematical Functions, Chap. 22.

• 

When all of 2a,1+n,n+2a are not a negative integer or zero, the Gegenbauer polynomials satisfy:

GegenbauerC(n,a,z) = 'piecewise'(n::negint,0, n=0, 1,convert(GegenbauerC(n,a,z),hypergeom));

GegenbauerCn,a,z=0n::1n=0Γn+2ahypergeomn,n+2a,12+a,z2+12Γ1+nΓ2aotherwise

(1)
  

and are orthogonal on the interval −1,1 with respect to the weight function wz=z2+1a12:

Int(w(z)* GegenbauerC(m, a, z) * GegenbauerC(n, a, z), z=-1..1) = 'piecewise'(n=m, Pi*2^(1-2*a)*GAMMA(n+2*a)/(n!*(n+a)*GAMMA(a)^2),0);

−11wzGegenbauerCm,a,zGegenbauerCn,a,zⅆz=π212aΓn+2an!n+aΓa2n=m0otherwise

(2)
• 

When any of 2a,1+n,n+2a is a negative integer or zero, the Gegenbauer polynomials are computed using the following identity:

GegenbauerC(n,a,z) = (2*a*z*(1+2*a)*GegenbauerC(n-1,1+a,z) + 4*(-1+z^2)*a*(1+a)*GegenbauerC(n-2,a+2,z)) / ((n+2*a)*n);

GegenbauerCn,a,z=2az1+2aGegenbauerCn1,1+a,z+4z21a1+aGegenbauerCn2,a+2,zn+2an

(3)
  

which in turn can be derived from the differential equation with respect to z satisfied by this function:

f(z) = GegenbauerC(a,b,z);

fz=GegenbauerCa,b,z

(4)

diff(f(z),z,z) = (-1-2*b)*z/(-1+z^2)*diff(f(z),z)+a*(2*b+a)/(-1+z^2)*f(z);

ⅆ2ⅆz2fz=12bzⅆⅆzfzz21+a2b+afzz21

(5)
• 

For n::posint and n > 1 and a <> 0, the Gegenbauer polynomials satisfy the following recurrence relations:

GegenbauerC(0,a,z) = 1:

GegenbauerC(1,a,z) = 2*a*z:

GegenbauerC(n,a,z) = 2*(n+a-1)/n*z*GegenbauerC(n-1,a,z) - (n+2*a-2)/n*GegenbauerC(n-2,a,z):

  

and for a = 0, they are related to the ChebyshevT polynomials:

GegenbauerC(n,0,z) = 2/n*ChebyshevT(n,z):

Examples

Special values with respect to n:

simplifyGegenbauerCn&comma;a&comma;z&comma;GegenbauerCassumingn::negint

0

(6)

simplifyGegenbauerCn&comma;a&comma;z&comma;GegenbauerCassumingn=0

1

(7)

simplifyGegenbauerC3&comma;a&comma;z&comma;GegenbauerC

4az2a+2z232z1+a3

(8)

Special values with respect to a:

simplifyGegenbauerCn&comma;a&comma;z&comma;GegenbauerCassuminga::negint

0

(9)

simplifyGegenbauerC2&comma;a&comma;z&comma;GegenbauerCassuminga=0

2z21

(10)

simplifyGegenbauerCn&comma;a&comma;z&comma;GegenbauerCassuminga=0,n::posint

−1nGegenbauerCn&comma;a&comma;z

(11)

Special values with respect to z:

simplifyGegenbauerCn&comma;a&comma;z&comma;GegenbauerCassumingz=0

2nΓa+n2πΓaΓ12n2Γ1+n

(12)

simplifyGegenbauerCn&comma;a&comma;z&comma;GegenbauerCassumingz=1,n::nonnegint

Γn+2aΓ1+nΓ2a

(13)

simplifyGegenbauerCn&comma;a&comma;z&comma;GegenbauerCassumingz=1,n::nonnegint

−1nΓn+2aΓ2an!

(14)

See Also

ChebyshevT

ChebyshevU

GAMMA

HermiteH

JacobiP

LaguerreL

LegendreP

orthopoly[G]

simplify