ControllabilityMatrix - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DynamicSystems

  

ControllabilityMatrix

  

compute the controllability matrix

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ControllabilityMatrix( sys )

ControllabilityMatrix( Amat, Bmat )

Parameters

sys

-

System(ss); state-space system

Amat

-

Matrix; state-space Matrix A

Bmat

-

Matrix; state-space Matrix B

Description

• 

The ControllabilityMatrix command computes the controllability matrix of a state-space system.

• 

If the parameter sys is a state-space System, then the A and B Matrices are sys:-a and sys:-b, respectively.

• 

If the parameters Amat and Bmat are Matrices, then they are the A and B Matrices, respectively.

• 

The controllability matrix has dimensions n x n*m, where n is the number of states (dimension of A) and m is the number of inputs (column dimension of B). It has the form << B | A . B | A^2 . B | A^3 . B | ... | A^(n-1) . B >>.

Examples

withDynamicSystems&colon;

withLinearAlgebra&colon;

sys1StateSpace1s2+s+10&colon;

ControllabilityMatrixsys1

011−1

(1)

sys2StateSpace3|1|0&comma;5|0|1&comma;3|0|0&comma;1&comma;2&comma;3&comma;1|0|0&comma;0&colon;

ControllabilityMatrixsys2:-a&comma;sys2:-b

1−112−223−33

(2)

sys3StateSpaceDiagonalMatrixa1&comma;a2&comma;a3&comma;0|0&comma;b1|0&comma;0|b2&comma;c1|0|0&comma;0|0|c3&comma;0|0&comma;0|0&colon;

sys3:-a,sys3:-b

a1000a2000a3,00b100b2

(3)

ControllabilityMatrixsys3

000000b10a2b10a22b100b20a3b20a32b2

(4)

See Also

DynamicSystems

DynamicSystems[Controllable]

DynamicSystems[Grammians]

DynamicSystems[ObservabilityMatrix]

DynamicSystems[Observable]

DynamicSystems[SSTransformation]