DynamicSystems
ControllabilityMatrix
compute the controllability matrix
Calling Sequence
Parameters
Description
Examples
ControllabilityMatrix( sys )
ControllabilityMatrix( Amat, Bmat )
sys
-
System(ss); state-space system
Amat
Matrix; state-space Matrix A
Bmat
Matrix; state-space Matrix B
The ControllabilityMatrix command computes the controllability matrix of a state-space system.
If the parameter sys is a state-space System, then the A and B Matrices are sys:-a and sys:-b, respectively.
If the parameters Amat and Bmat are Matrices, then they are the A and B Matrices, respectively.
The controllability matrix has dimensions n x n*m, where n is the number of states (dimension of A) and m is the number of inputs (column dimension of B). It has the form << B | A . B | A^2 . B | A^3 . B | ... | A^(n-1) . B >>.
with⁡DynamicSystems:
with⁡LinearAlgebra:
sys1≔StateSpace⁡1s2+s+10:
ControllabilityMatrix⁡sys1
011−1
sys2≔StateSpace⁡−3|1|0,−5|0|1,−3|0|0,1,2,3,1|0|0,0:
ControllabilityMatrix⁡sys2:-a,sys2:-b
1−112−223−33
sys3≔StateSpace⁡DiagonalMatrix⁡a1,a2,a3,0|0,b1|0,0|b2,c1|0|0,0|0|c3,0|0,0|0:
sys3:-a,sys3:-b
a1000a2000a3,00b100b2
ControllabilityMatrix⁡sys3
000000b10a2⁢b10a22⁢b100b20a3⁢b20a32⁢b2
See Also
DynamicSystems[Controllable]
DynamicSystems[Grammians]
DynamicSystems[ObservabilityMatrix]
DynamicSystems[Observable]
DynamicSystems[SSTransformation]
Download Help Document