DynamicSystems
SSTransformation
perform similarity transformations on state-space matrices
Calling Sequence
Parameters
Options
Description
Examples
SSTransformation(Amat, Bmat, Cmat, Dmat, opts )
Amat
-
Matrix; system matrix of a state-space system
Bmat
Matrix; input matrix of a state-space system
Cmat
Matrix; output matrix of a state-space system
Dmat
(optional) Matrix; direct-through matrix of a state-space system. If not specified, a zero matrix of appropriate dimension is used as the default (if D is requested for the output)
opts
(optional) equation(s) of the form option = value; specify options for the SSTransformation command
form = ControlStaircase, ObserveStaircase, ControlCanon, ObserveCanon, ModalCanon, or Balanced
Specifies the form of the transformed Matrix. The default is ControlStaircase.
output = T, Tinv, A, B, C, D, r, or list of same
Specifies the values returned. The default is T. If output is assigned a name, then the value corresponding to that name is returned. If output is a assigned a list of names, then the values corresponding to each of the names in the list is returned, in that order.
The values for T and Tinv are the transformation matrix and its inverse, respectively.
The values for A, B, C, and D are the transformed state-space matrices.
The value for r is the dimension of the system Matrix. For the ControlStaircase and ObserveStaircase transforms, r is the dimension of the controllable and observable subsystems, respectively. For the other transforms, r is the dimension of A.
discrete = truefalse
True means the system is discrete, false means it is continuous. The default is the value of the variable discrete in the DynamicSystems[SystemOptions] command.
returnlist = truefalse
True means return a list; false means return an expression sequence. The default is false.
The SSTransformation command performs a selected similarity transformation on state-space matrices.
The similarity transformations are ControlStaircase, ObserveStaircase, ControlCanon, ObserveCanon, ModalCanon, and Balanced. The transformation is selected with the named option form.
For a state-space system defined by the state and output equations ⅆⅆtx⁡t=A⁢x⁡t+B⁢u⁡t and y⁡t=C⁢x⁡t+D⁢u⁡t, the computed similarity transformation matrix T transforms the input state-space system as follows:
x[new](t) = Tinv . x(t)
A[new] = Tinv . A . T
B[new] = Tinv . B
C[new] = C . T
D[new] = D
where Tinv is the inverse of the matrix T.
ControlStaircase Transformation
The ControlStaircase transformation transforms the system matrix A into a lower-triangle staircase form
A=Matrix⁡Auc,0,A2,1,Ac
B=Matrix⁡0,Bc
C=Matrix⁡Cuc,Cc
The submatrices Ac,Bc,Cc are the controllable subsystem of A,B,C. The dimension of Ac is assigned the output option r.
ObserveStaircase Transforms
The ObserveStaircase transformation transforms the system matrix A into an upper-triangle staircase form
A=Matrix⁡Auo,A1,2,0,Ao
B=Matrix⁡Buo,Bo
C=Matrix⁡0,Co
The submatrices Ao,Bo,Co are the observable subsystem of A,B,C. The dimension of Ao is assigned the output option r.
ControlCanon Transformation
The ControlCanon transformation transforms the input system into the controllable canonical form where the system matrix A has the form:
A=Matrix⁡0,1,0,0,0,0,1,0,0,0,0,1,−a0,−a1,−a2,−a3
The ai are the coefficients of the DynamicSystems[CharacteristicPolynomial] of the n x n system matrix A: s^n + a[n-1]*s^(n-1) + ... + a[0]. The ControlCanon transformation applies only to a controllable system.
ObserveCanon Transformation
The ObserveCanon transformation transforms the input system into the observable canonical form where the system matrix A has the form:
A=Matrix⁡0,0,0,−a0,1,0,0,−a1,0,1,0,−a2,0,0,1,−a3
The ai are the coefficients of the DynamicSystems[CharacteristicPolynomial] of the n x n system matrix A: s^n + a[n-1]*s^(n-1) + ... + a[0]. The ObserveCanon transformation only applies to observable system. The observable canonical form is also known as the companion canonical form.
ModalCanon Transformation
The ModalCanon transformation transforms the input system into the modal canonical form, which has a block-diagonal system matrix A. The block-diagonal entries of the transformed A are the distinct eigenvalues of the given A. Real eigenvalues correspond to a 1 x 1 block while complex eigenvalues constitute a 2 x 2 block of the form Matrix⁡σ,ω,−ω,σ where σ and ω are the real and imaginary parts, respectively, of the complex eigenvalue. The ModalCanon transformation only applies to numeric systems with distinct eigenvalues (that is, no repeated eigenvalues). The modal canonical form is also known as the diagonal canonical form.
Balanced Transformation
The Balanced transformation transforms the input system such that the controllability and observability grammians of the system are diagonal and equal to each other. The Balanced transformation is only applicable to stable systems that are both controllable and observable.
with⁡DynamicSystems:
Amat≔−5|1|0,0|−2|1,0|0|−1:
Bmat≔0,0,1:
Cmat≔1|0|0:
Dmat≔0:
SSTransformation⁡Amat,Bmat,Cmat,Dmat,form=ControlCanon,output=A,B,C,D
010001−10−17−8,001,100,0
SSTransformation⁡Amat,Bmat,Cmat,Dmat,form=ObserveCanon,output=A,B,C,D
00−1010−1701−8,100,001,0
SSTransformation⁡Amat,Bmat,Cmat,Dmat,form=ModalCanon,output=A,B,C,D,T
−1.000−2.000−5.,1413112,1−11,0,1−114−30400
See Also
DynamicSystems[Controllable]
DynamicSystems[Grammians]
DynamicSystems[Observable]
LinearAlgebra
LinearAlgebra[CharacteristicPolynomial]
LinearAlgebra[CompanionMatrix]
LinearAlgebra[IsSimilar]
Download Help Document