EllipticModulus
Modulus function k(q)
Calling Sequence
Parameters
Description
Examples
EllipticModulus(q)
q
-
expression denoting a complex number such that q<1
Given the Nome q, q<1, entering the definition of Jacobi Theta functions, for instance
FunctionAdvisor(definition, JacobiTheta1)[1];
JacobiTheta1⁡z,q=∑_k1=0∞⁡2⁢q_k1+122⁢sin⁡z⁢2⁢_k1+1⁢−1_k1
EllipticModulus computes the corresponding Modulus k, 0<ℜ⁡k entering the definition of related elliptic integrals and JacobiPQ elliptic functions.
FunctionAdvisor(definition, EllipticF)[1];
EllipticF⁡z,k=∫0z1−_α12+1⁢−k2⁢_α12+1ⅆ_α1
FunctionAdvisor(definition, JacobiSN)[1];
JacobiSN⁡z,k=sin⁡JacobiAM⁡z,k
FunctionAdvisor(definition, JacobiAM);
z=JacobiAM⁡∫0z11−k2⁢sin⁡θ2ⅆθ,k,z::−32,32
Alternatively, given the Modulus k, 0<ℜ⁡k entering Elliptic integrals and JacobiPQ functions, it is possible to compute the corresponding Nome q, q<1, using EllipticNome, which is the inverse function of EllipticModulus.
EllipticModulus is defined in terms of JacobiTheta functions by:
FunctionAdvisor( definition, EllipticModulus );
EllipticModulus⁡q=JacobiTheta2⁡0,q2JacobiTheta3⁡0,q2,q<1
The JacobiPQ functions can be expressed in terms of JacobiTheta functions using EllipticNome
JacobiSN(z,k) = (1/(k^2))^(1/4) * JacobiTheta1(1/2*Pi*z/EllipticK(k),EllipticNome(k)) / JacobiTheta4(1/2*Pi*z/EllipticK(k),EllipticNome(k));
JacobiSN⁡z,k=1k214⁢JacobiTheta1⁡π⁢z2⁢EllipticK⁡k,EllipticNome⁡kJacobiTheta4⁡π⁢z2⁢EllipticK⁡k,EllipticNome⁡k
Alternative popular notations for elliptic integrals and JacobiPQ functions involve a parameter m or a modular angle alpha, as for instance in the Handbook of Mathematical Functions edited by Abramowitz and Stegun (A&S). These are related to k by m=k2 and sin(alpha) = k. For example, the Elliptic K⁡m function shown in A&S is numerically equal to the Maple EllipticK⁡m command.
FunctionAdvisor⁡definition,EllipticModulus⁡q1
EllipticModulus⁡q=JacobiTheta2⁡0,q2JacobiTheta3⁡0,q2
evalf⁡eval⁡,q=12
0.9999947611=0.9999947617
EllipticModulus⁡EllipticNome⁡k=k
evalf⁡eval⁡,k=2
2.=2.
EllipticNome⁡EllipticModulus⁡q=q
0.5000000000=0.5000000000
See Also
EllipticF
EllipticNome
FunctionAdvisor
Download Help Document