EllipticModulus - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


EllipticModulus

Modulus function k(q)

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

EllipticModulus(q)

Parameters

q

-

expression denoting a complex number such that q<1

Description

  

Given the Nome q, q<1, entering the definition of Jacobi Theta functions, for instance

FunctionAdvisor(definition, JacobiTheta1)[1];

JacobiTheta1z&comma;q=_k1=02q_k1+122sinz2_k1+1−1_k1

(1)
  

EllipticModulus computes the corresponding Modulus k, 0<k entering the definition of related elliptic integrals and JacobiPQ elliptic functions.

FunctionAdvisor(definition, EllipticF)[1];

EllipticFz&comma;k=0z1_&alpha;12+1k2_&alpha;12+1&DifferentialD;_&alpha;1

(2)

FunctionAdvisor(definition, JacobiSN)[1];

JacobiSNz&comma;k=sinJacobiAMz&comma;k

(3)

FunctionAdvisor(definition, JacobiAM);

z=JacobiAM0z11k2sinθ2&DifferentialD;θ&comma;k&comma;z::32&comma;32

(4)
  

Alternatively, given the Modulus k, 0<k entering Elliptic integrals and JacobiPQ functions, it is possible to compute the corresponding Nome q, q<1, using EllipticNome, which is the inverse function of EllipticModulus.

  

EllipticModulus is defined in terms of JacobiTheta functions by:

FunctionAdvisor( definition, EllipticModulus );

EllipticModulusq=JacobiTheta20&comma;q2JacobiTheta30&comma;q2&comma;q<1

(5)
  

The JacobiPQ functions can be expressed in terms of JacobiTheta functions using EllipticNome

JacobiSN(z,k) = (1/(k^2))^(1/4) * JacobiTheta1(1/2*Pi*z/EllipticK(k),EllipticNome(k)) / JacobiTheta4(1/2*Pi*z/EllipticK(k),EllipticNome(k));

JacobiSNz&comma;k=1k214JacobiTheta1πz2EllipticKk&comma;EllipticNomekJacobiTheta4πz2EllipticKk&comma;EllipticNomek

(6)
  

Alternative popular notations for elliptic integrals and JacobiPQ functions involve a parameter m or a modular angle alpha, as for instance in the Handbook of Mathematical Functions edited by Abramowitz and Stegun (A&S). These are related to k by m=k2 and sin(alpha) = k. For example, the Elliptic Km function shown in A&S is numerically equal to the Maple EllipticKm command.

Examples

FunctionAdvisordefinition&comma;EllipticModulusq1

EllipticModulusq=JacobiTheta20&comma;q2JacobiTheta30&comma;q2

(7)

evalfeval&comma;q=12

0.9999947611=0.9999947617

(8)

EllipticModulusEllipticNomek=k

EllipticModulusEllipticNomek=k

(9)

evalfeval&comma;k=2

2.=2.

(10)

EllipticNomeEllipticModulusq=q

EllipticNomeEllipticModulusq=q

(11)

evalfeval&comma;q=12

0.5000000000=0.5000000000

(12)

See Also

EllipticF

EllipticNome

FunctionAdvisor