EllipticNome
Nome function q(k)
Calling Sequence
Parameters
Description
Examples
EllipticNome(k)
k
-
expression denoting a complex number
Given the Modulus k, 0<ℜ⁡k, entering the definition of Elliptic integrals and JacobiPQ functions,
FunctionAdvisor(definition, EllipticF)[1];
EllipticF⁡z,k=∫0z1−_α12+1⁢−k2⁢_α12+1ⅆ_α1
FunctionAdvisor(definition, JacobiSN)[1];
JacobiSN⁡z,k=sin⁡JacobiAM⁡z,k
FunctionAdvisor(definition, JacobiAM);
z=JacobiAM⁡∫0z11−k2⁢sin⁡θ2ⅆθ,k,z::−32,32
EllipticNome computes the corresponding Nome q, q<1, entering the definition of the related (see below) Jacobi Theta functions, for instance:
FunctionAdvisor(definition, JacobiTheta1)[1];
JacobiTheta1⁡z,q=∑_k1=0∞⁡2⁢q_k1+122⁢sin⁡z⁢2⁢_k1+1⁢−1_k1
Alternatively, given the Nome q, q<1, it is possible to compute the corresponding Modulus k, 0<ℜ⁡k, using EllipticModulus, which is the inverse function of EllipticNome.
EllipticNome is defined in terms of the Complete Elliptic integral of the first kind EllipticK by:
FunctionAdvisor( definition, EllipticNome );
EllipticNome⁡k=ⅇ−π⁢EllipticCK⁡kEllipticK⁡k,with no restrictions on ⁡k
The JacobiPQ functions can be expressed in terms of JacobiTheta functions using EllipticNome
JacobiSN(z,k) = (1/(k^2))^(1/4) * JacobiTheta1(1/2*Pi*z/EllipticK(k),EllipticNome(k)) / JacobiTheta4(1/2*Pi*z/EllipticK(k),EllipticNome(k));
JacobiSN⁡z,k=1k214⁢JacobiTheta1⁡π⁢z2⁢EllipticK⁡k,EllipticNome⁡kJacobiTheta4⁡π⁢z2⁢EllipticK⁡k,EllipticNome⁡k
Alternative popular notations for elliptic integrals and JacobiPQ functions involve a parameter m or a modular angle alpha, as for instance in the Handbook of Mathematical Functions edited by Abramowitz and Stegun (A&S). These are related to k by m=k2 and sin(alpha) = k. For example, the Elliptic K⁡m function shown in A&S is numerically equal to the Maple EllipticK⁡m command.
FunctionAdvisor⁡definition,EllipticNome⁡k1
EllipticNome⁡k=ⅇ−π⁢EllipticCK⁡kEllipticK⁡k
evalf⁡eval⁡,k=12
0.01797238701=0.01797238701
EllipticModulus⁡EllipticNome⁡k=k
evalf⁡eval⁡,k=2
2.=2.
EllipticNome⁡EllipticModulus⁡q=q
evalf⁡eval⁡,q=12
0.5000000000=0.5000000000
See Also
Elliptic integrals
EllipticModulus
FunctionAdvisor
InverseJacobiPQ functions
Jacobi Theta functions
JacobiPQ functions
Download Help Document