EllipticNome - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


EllipticNome

Nome function q(k)

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

EllipticNome(k)

Parameters

k

-

expression denoting a complex number

Description

  

Given the Modulus k, 0<k, entering the definition of Elliptic integrals and JacobiPQ functions,

FunctionAdvisor(definition, EllipticF)[1];

EllipticFz&comma;k=0z1_&alpha;12+1k2_&alpha;12+1&DifferentialD;_&alpha;1

(1)

FunctionAdvisor(definition, JacobiSN)[1];

JacobiSNz&comma;k=sinJacobiAMz&comma;k

(2)

FunctionAdvisor(definition, JacobiAM);

z=JacobiAM0z11k2sinθ2&DifferentialD;θ&comma;k&comma;z::32&comma;32

(3)
  

EllipticNome computes the corresponding Nome q, q<1, entering the definition of the related (see below) Jacobi Theta functions, for instance:

FunctionAdvisor(definition, JacobiTheta1)[1];

JacobiTheta1z&comma;q=_k1=02q_k1+122sinz2_k1+1−1_k1

(4)
  

Alternatively, given the Nome q, q<1, it is possible to compute the corresponding Modulus k, 0<k, using EllipticModulus, which is the inverse function of EllipticNome.

  

EllipticNome is defined in terms of the Complete Elliptic integral of the first kind EllipticK by:

FunctionAdvisor( definition, EllipticNome );

EllipticNomek=&ExponentialE;πEllipticCKkEllipticKk&comma;with no restrictions on k

(5)
  

The JacobiPQ functions can be expressed in terms of JacobiTheta functions using EllipticNome

JacobiSN(z,k) = (1/(k^2))^(1/4) * JacobiTheta1(1/2*Pi*z/EllipticK(k),EllipticNome(k)) / JacobiTheta4(1/2*Pi*z/EllipticK(k),EllipticNome(k));

JacobiSNz&comma;k=1k214JacobiTheta1πz2EllipticKk&comma;EllipticNomekJacobiTheta4πz2EllipticKk&comma;EllipticNomek

(6)
  

Alternative popular notations for elliptic integrals and JacobiPQ functions involve a parameter m or a modular angle alpha, as for instance in the Handbook of Mathematical Functions edited by Abramowitz and Stegun (A&S). These are related to k by m=k2 and sin(alpha) = k. For example, the Elliptic Km function shown in A&S is numerically equal to the Maple EllipticKm command.

Examples

FunctionAdvisordefinition&comma;EllipticNomek1

EllipticNomek=&ExponentialE;πEllipticCKkEllipticKk

(7)

evalfeval&comma;k=12

0.01797238701=0.01797238701

(8)

EllipticModulusEllipticNomek=k

EllipticModulusEllipticNomek=k

(9)

evalfeval&comma;k=2

2.=2.

(10)

EllipticNomeEllipticModulusq=q

EllipticNomeEllipticModulusq=q

(11)

evalfeval&comma;q=12

0.5000000000=0.5000000000

(12)

See Also

Elliptic integrals

EllipticModulus

FunctionAdvisor

InverseJacobiPQ functions

Jacobi Theta functions

JacobiPQ functions