OrthogonalSeries
ApplyOperator
apply a differential or difference operator to a series
Calling Sequence
Parameters
Description
Examples
ApplyOperator(L,S)
L
-
differential or difference operator
S
orthogonal series
The ApplyOperator function applies the operator L to the series S using the elementary operations for series: differentiation, derivative representation, and multiplication by a polynomial.
with⁡OrthogonalSeries:
S1≔Create⁡2n,LaguerreL⁡n,1,x
S1≔∑n=0∞⁡2n⁢LaguerreL⁡n,1,x
R1≔ApplyOperator⁡x2⁢dx2−7⁢x⁢dx+3,dx,x,S1
R1≔139⁢LaguerreL⁡0,3,x+332⁢LaguerreL⁡1,3,x+∑n=2∞⁡−19⁢2n+3⁢n+3⁢2n+2⁢n−8⁢2n⁢n+15⁢2n+1⁢n−12⁢2n+3−33⁢2n+2+3⁢2n+22⁢2n+1+2n+4⁢n2−4⁢2n+3⁢n2+6⁢2n+2⁢n2+2n⁢n2−4⁢2n+1⁢n2+9⁢2n+4⁢n+20⁢2n+4⁢LaguerreL⁡n,3,x
SimplifyCoefficients⁡R1,simplify
139⁢LaguerreL⁡0,3,x+332⁢LaguerreL⁡1,3,x+∑n=2∞⁡2n⁢n2+26⁢n+139⁢LaguerreL⁡n,3,x
S3≔Create⁡a⁡n,m,LaguerreL⁡n,2,x,LaguerreL⁡m,3,y
S3≔∑m=0∞⁡∑n=0∞⁡a⁡n,m⁢LaguerreL⁡n,2,x⁢LaguerreL⁡m,3,y
R≔ApplyOperator⁡x⁢dx+y⁢dy,dx,x,dy,y,S3
R≔∑m=0∞⁡∑n=0∞⁡n⁢a⁡n,m+−2⁢n−4⁢a⁡n+1,m+n+4⁢a⁡n+2,m+m⁢a⁡n,m+−2⁢m−5⁢a⁡n,m+1+m+5⁢a⁡n,m+2⁢LaguerreL⁡n,2,x⁢LaguerreL⁡m,3,y
SimplifyCoefficients⁡R,collect,a
∑m=0∞⁡∑n=0∞⁡n+m⁢a⁡n,m+−2⁢n−4⁢a⁡n+1,m+n+4⁢a⁡n+2,m+−2⁢m−5⁢a⁡n,m+1+m+5⁢a⁡n,m+2⁢LaguerreL⁡n,2,x⁢LaguerreL⁡m,3,y
S5≔Create⁡1n+1,1=7,LaguerreL⁡n,1,x
S5≔7⁢LaguerreL⁡1,1,x+∑n=0∞⁡LaguerreL⁡n,1,xn+1
R2≔ApplyOperator⁡1+x⁢d+a,d,x,S5
R2≔−13⁢a2−29⁢LaguerreL⁡0,2,x+7⁢a+7⁢LaguerreL⁡1,2,x+∑n=1∞⁡an+1⁢n+2−1n+2−1n+1⁢n+2⁢LaguerreL⁡n,2,x
SimplifyCoefficients⁡R2,simplify
−13⁢a2−29⁢LaguerreL⁡0,2,x+7⁢a+7⁢LaguerreL⁡1,2,x+∑n=1∞⁡a−n−2⁢LaguerreL⁡n,2,xn+1⁢n+2
See Also
LaguerreL
OrthogonalSeries[Create]
OrthogonalSeries[SimplifyCoefficients]
Download Help Document