OrthogonalSeries
PolynomialMultiply
multiply a series by a polynomial
Calling Sequence
Parameters
Description
Examples
PolynomialMultiply(p, S)
S
-
orthogonal series
p
polynomial in the variables of S
The PolynomialMultiply(p, S) function returns a series equal to the product of the series S and the polynomial p.
with⁡OrthogonalSeries:
S≔Create⁡1n+1,n=3..7,LaguerreL⁡n,a,z
S≔∑n=37⁡LaguerreL⁡n,a,zn+1
S1≔PolynomialMultiply⁡3+z,S
S1≔−34−a4⁢LaguerreL⁡2,a,z+1710+a20⁢LaguerreL⁡3,a,z+54+a8⁢LaguerreL⁡7,a,z−LaguerreL⁡8,a,z+∑n=46⁡3n+1+a−1n+1⁢n+2⁢LaguerreL⁡n,a,z
SimplifyCoefficients⁡S1,normal
−34−a4⁢LaguerreL⁡2,a,z+1710+a20⁢LaguerreL⁡3,a,z+54+a8⁢LaguerreL⁡7,a,z−LaguerreL⁡8,a,z+∑n=46⁡3⁢n+5+a⁢LaguerreL⁡n,a,zn+1⁢n+2
R≔Create⁡1,1=8,Charlier⁡n,2,x,Charlier⁡m,3,y
R≔8⁢Charlier⁡1,2,x⁢Charlier⁡1,3,y
R1≔PolynomialMultiply⁡x+y3,R
R1≔144⁢Charlier⁡0,2,x⁢Charlier⁡0,3,y−776⁢Charlier⁡0,2,x⁢Charlier⁡1,3,y+432⁢Charlier⁡0,2,x⁢Charlier⁡2,3,y−800⁢Charlier⁡1,2,x⁢Charlier⁡0,3,y+3792⁢Charlier⁡1,2,x⁢Charlier⁡1,3,y−3192⁢Charlier⁡1,2,x⁢Charlier⁡2,3,y+1080⁢Charlier⁡1,2,x⁢Charlier⁡3,3,y−216⁢Charlier⁡1,2,x⁢Charlier⁡4,3,y+384⁢Charlier⁡2,2,x⁢Charlier⁡0,3,y−2320⁢Charlier⁡2,2,x⁢Charlier⁡1,3,y+1152⁢Charlier⁡2,2,x⁢Charlier⁡2,3,y−96⁢Charlier⁡3,2,x⁢Charlier⁡0,3,y+768⁢Charlier⁡3,2,x⁢Charlier⁡1,3,y−288⁢Charlier⁡3,2,x⁢Charlier⁡2,3,y−64⁢Charlier⁡4,2,x⁢Charlier⁡1,3,y
See Also
LaguerreL
OrthogonalSeries[Create]
OrthogonalSeries[SimplifyCoefficients]
Download Help Document