OrthogonalSeries
SimplifyCoefficients
simplify the coefficients of an orthogonal series
Calling Sequence
Parameters
Description
Examples
SimplifyCoefficients(S, funct, collect_expr, other_args)
S
-
orthogonal series
funct
name chosen from: collect, expand, factor, normal, and simplify
collect_expr
(optional) expression(s) to be collected
other_args
(optional) complementary arguments if funct is collect
The SimplifyCoefficients(S, funct) calling sequence applies the funct function, where funct is not collect, to the coefficients of the series S (both particular and general coefficients).
The SimplifyCoefficients(S, collect, collect_expr, other_args) function applies the collect function to the coefficients of the series S (both particular and general coefficients). The user must specify the expression(s) to be collected by collect_expr. The user can specify a function to be applied to the collected expressions by other_args.
with⁡OrthogonalSeries:
R≔Create⁡1a,a2,1a+1,GegenbauerC⁡n,23,x
R≔GegenbauerC⁡0,23,xa+a2⁢GegenbauerC⁡1,23,x+GegenbauerC⁡2,23,xa+1
res≔Derivate⁡R,x,operator=struct,root=1
res≔−14⁢413⁢π⁢3⁢a2⁢Γ⁡56⁢JacobiP⁡0,16,76,x45⁢Γ⁡232+4⁢413⁢π⁢3⁢a2⁢Γ⁡5615⁢Γ⁡232−5⁢413⁢π⁢3⁢Γ⁡569⁢Γ⁡232⁢a+1⁢JacobiP⁡1,16,76,x+20⁢413⁢π⁢3⁢Γ⁡56⁢JacobiP⁡2,16,76,x39⁢Γ⁡232⁢a+1
SimplifyCoefficients⁡res,normal
−14⁢413⁢π⁢3⁢a2⁢Γ⁡56⁢JacobiP⁡0,16,76,x45⁢Γ⁡232+413⁢π⁢3⁢Γ⁡56⁢12⁢a3+12⁢a2−25⁢JacobiP⁡1,16,76,x45⁢Γ⁡232⁢a+1+20⁢413⁢π⁢3⁢Γ⁡56⁢JacobiP⁡2,16,76,x39⁢Γ⁡232⁢a+1
SimplifyCoefficients⁡res,simplify
−14⁢a2⁢JacobiP⁡0,16,76,x15+12⁢a3+12⁢a2−25⁢JacobiP⁡1,16,76,x15⁢a+15+20⁢JacobiP⁡2,16,76,x13⁢a+13
coef≔u⁡n−u⁡n+1n2+u⁡n+2−u⁡nn⁢n+1
R1≔Create⁡coef,n=1..∞,GegenbauerC⁡n,a,x
R1≔∑n=1∞⁡u⁡n−u⁡n+1n2+u⁡n+2−u⁡nn⁢n+1⁢GegenbauerC⁡n,a,x
SimplifyCoefficients⁡R1,collect,u
∑n=1∞⁡1n2−1n⁢n+1⁢u⁡n−u⁡n+1n2+u⁡n+2n⁢n+1⁢GegenbauerC⁡n,a,x
SimplifyCoefficients⁡R1,collect,u,normal
∑n=1∞⁡u⁡nn2⁢n+1−u⁡n+1n2+u⁡n+2n⁢n+1⁢GegenbauerC⁡n,a,x
See Also
GegenbauerC
JacobiP
OrthogonalSeries[Create]
OrthogonalSeries[Derivate]
Download Help Document