Rational - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


SumTools[IndefiniteSum]

  

Rational

  

compute closed forms of indefinite sums of rational functions

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Rational(f, k, options)

Parameters

f

-

rational function in k

k

-

name

options

-

(optional) equation of the form failpoints=true or failpoints=false

Description

• 

The Rational(f, k) command computes a closed form of the indefinite sum of f with respect to k.

• 

Rational functions are summed using Abramov's algorithm (see the References section). For the input rational function fk, the algorithm computes two rational functions sk and tk such that fk=sk+1sk+tk and the denominator of tk has minimal degree with respect to k.  The non-rational part, ktk, is then expressed in terms of the digamma and polygamma functions.

• 

If the option failpoints=true (or just failpoints for short) is specified, then the command returns a pair g,p,q, where

– 

g is the closed form of the indefinite sum of f w.r.t. k,

– 

p is a list containing the integer poles of f, and

– 

q is a list containing the poles of s and t that are not poles of f.

  

See SumTools[IndefiniteSum][Indefinite] for more detailed help.

Examples

withSumToolsIndefiniteSum:

The following expression is rationally summable.

f1n2+sqrt5n1

f1n2+5n1

(1)

gRationalf,n

g13n32+5213n12+5213n+12+52

(2)

Check the telescoping equation:

evalaNormalevalg,n=n+1g,expanded

1n2+5n1

(3)

A non-rationally summable example.

f1357x+2y+20x218xy+10y215+10x26y25x2+10xy+8y2

f20x218xy+10y257x+2y+1325x2+10xy+8y2+10x26y+15

(4)

gRationalf,x

g4x5+7y25+3425Ψx4y5+35+17y25+35Ψx+2y51

(5)

simplifycombinefevalg,x=x+1g,Ψ

0

(6)

Compute the fail points.

f1n2n3+1n5

f1n2n3+1n5

(7)

g,fpRationalf,n,failpoints

g,fp1n51n4+1n3+1n2+1n1,0..0,3..3,5..5,1,2,4

(8)

Indeed, f is not defined at n=0,3,5, and g is not defined at n=1,2,4.

References

• 

Abramov, S.A. "Indefinite sums of rational functions." Proceedings ISSAC'95, pp. 303-308. 1995.

See Also

SumTools[IndefiniteSum]

SumTools[IndefiniteSum][Indefinite]