Heun - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


convert/Heun

convert to special functions of the Heun class

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

convert(expr, Heun)

Parameters

expr

-

Maple expression, equation, or a set or list of them

Description

• 

convert/Heun converts, when possible, hypergeometric, MeijerG and special functions into Heun functions; that is, into one of

FunctionAdvisor( Heun );

The 23 functions in the "Heun" class are:

HeunB,HeunBPrime,HeunC,HeunCPrime,HeunD,HeunDPrime,HeunG,HeunGPrime,HeunT,HeunTPrime,MathieuA,MathieuB,MathieuC,MathieuCE,MathieuCEPrime,MathieuCPrime,MathieuExponent,MathieuFloquet,MathieuFloquetPrime,MathieuS,MathieuSE,MathieuSEPrime,MathieuSPrime

(1)
• 

convert/Heun accepts as optional arguments all those described in convert[to_special_function].

Examples

An assorted sample of special and elementary functions

functions_2F1ChebyshevT,JacobiP,SphericalY,EllipticK,GaussAGM,arctan,arcsin

functions_2F1ChebyshevT,JacobiP,SphericalY,EllipticK,GaussAGM,arctan,arcsin

(2)

Their syntax (calling sequence) in Maple

map2FunctionAdvisor,syntax,functions_2F1

ChebyshevTa,z,JacobiPa,b,c,z,SphericalYλ,μ,θ,φ,EllipticKk,GaussAGMx,y,arctany,x,arcsinz

(3)

A Heun representation for them, in these cases using HeunC

mapuu=convertu,Heun,

ChebyshevTa,z=HeunC0,12,2a,0,a2+14,z1z+112+z2a,JacobiPa,b,c,z=a+bbHeunC0,b,b+c+2a+1,0,b+1+2ab+c+a+12b2b+1a2,z1z+112+z2b+c+a+1,SphericalYλ,μ,θ,φ=−1μ2λ+1πλμ!ⅇIφμcosθ+1μ2HeunC0,μ,2λ+1,0,λ2+λ+12,cosθ1cosθ+12λ+μ!cosθ1μ2Γ1μ12+cosθ2λ+1,EllipticKk=πHeunC0,0,0,0,14,k2k212k2+1,GaussAGMx,y=x+yyxx+y2HeunC0,0,0,0,14,xy24xy,arctany,x=HeunC0,1,0,0,12,Iyx2+y2+xx2+y21+Iyx2+y2+xx2+y2Iy+x2+y2xIxy,arcsinz=zHeunC0,12,0,0,14,z2z21z2+1

(4)

A sample of special and elementary functions not admitting HeunG representation

functions_1F1erfz,dawsonz,Eia,z,LaguerreLa,b,z,hypergeoma,b,z,MeijerGa,,0,b,z,cosz,sinz

functions_1F1erfz,dawsonz,Eiaz,LaguerreLa,b,z,hypergeoma,b,z,MeijerGa,,0,b,z,cosz,sinz

(5)

By default, the results are returned in terms of the lower Heun functions, that is, those with less parameters, in this case HeunB

mapuu=convertu,Heun,functions_1F1

erfz=2zHeunB1,0,1,0,z2π,dawsonz=zHeunB1,0,1,0,z2ⅇz2,Eiaz=HeunB22a,0,2a,0,za1+za1Γ1a,LaguerreLa,b,z=a+baHeunB2b,0,2b+2+4a,0,z,hypergeoma,b,z=HeunB2b2,0,2b4a,0,z,MeijerGa,,0,b,z=Γ1aHeunB2b,0,22b+4a,0,zΓ1b,cosz=2z+πHeunB2,0,0,0,I2z+π2ⅇI22z+π,sinz=zHeunB2,0,0,0,2IzⅇIz

(6)

A representation in terms of higher Heun functions, in this case HeunC, because these functions being converted belong to the 1F1 class, can be obtained specifying HeunC instead of Heun in the call to convert

mapuu=convertu,HeunC,functions_1F1

erfz=2z3+zHeunC1,12,1,14,34,z2π,dawsonz=zHeunC1,12,1,14,34,z2z2+1ⅇz2,Eiaz=1zHeunC1,1a,1,a2,12+a2,za1+za1Γ1a,LaguerreLa,b,z=a+baHeunC1,b,1,b212a,b2+1+a,zz+1,hypergeoma,b,z=HeunC1,b1,1,b2+a,b2a+12,zz+1,MeijerGa,,0,b,z=Γ1aHeunC1,b,1,b2a+12,b2+a,z1zΓ1b,cosz=2z+πHeunC1,1,1,0,12,−I2z+πIπ+2Iz+12ⅇI22z+π,sinz=2Iz2+zHeunC1,1,1,0,12,2IzⅇIz

(7)

See Also

convert

convert[`1F1`]

convert[`2F1`]

convert[to_special_function]

FunctionAdvisor

Heun functions

HeunB

HeunC

HeunG