convert/Heun
convert to special functions of the Heun class
Calling Sequence
Parameters
Description
Examples
convert(expr, Heun)
expr
-
Maple expression, equation, or a set or list of them
convert/Heun converts, when possible, hypergeometric, MeijerG and special functions into Heun functions; that is, into one of
FunctionAdvisor( Heun );
The 23 functions in the "Heun" class are:
HeunB,HeunBPrime,HeunC,HeunCPrime,HeunD,HeunDPrime,HeunG,HeunGPrime,HeunT,HeunTPrime,MathieuA,MathieuB,MathieuC,MathieuCE,MathieuCEPrime,MathieuCPrime,MathieuExponent,MathieuFloquet,MathieuFloquetPrime,MathieuS,MathieuSE,MathieuSEPrime,MathieuSPrime
convert/Heun accepts as optional arguments all those described in convert[to_special_function].
An assorted sample of special and elementary functions
functions_2F1≔ChebyshevT,JacobiP,SphericalY,EllipticK,GaussAGM,arctan,arcsin
Their syntax (calling sequence) in Maple
map2⁡FunctionAdvisor,syntax,functions_2F1
ChebyshevT⁡a,z,JacobiP⁡a,b,c,z,SphericalY⁡λ,μ,θ,φ,EllipticK⁡k,GaussAGM⁡x,y,arctan⁡y,x,arcsin⁡z
A Heun representation for them, in these cases using HeunC
map⁡u↦u=convert⁡u,Heun,
ChebyshevT⁡a,z=HeunC⁡0,−12,−2⁢a,0,a2+14,z−1z+1⁢12+z2a,JacobiP⁡a,b,c,z=a+bb⁢HeunC⁡0,b,b+c+2⁢a+1,0,b+1+2⁢a⁢b+c+a+12−b2−b+1⁢a2,z−1z+112+z2b+c+a+1,SphericalY⁡λ,μ,θ,φ=−1μ⁢2⁢λ+1π⁢λ−μ!⁢ⅇI⁢φ⁢μ⁢cos⁡θ+1μ2⁢HeunC⁡0,−μ,2⁢λ+1,0,λ2+λ+12,cos⁡θ−1cos⁡θ+12⁢λ+μ!⁢cos⁡θ−1μ2⁢Γ⁡1−μ⁢12+cos⁡θ2λ+1,EllipticK⁡k=π⁢HeunC⁡0,0,0,0,14,k2k2−12⁢−k2+1,GaussAGM⁡x,y=x+y⁢y⁢xx+y2HeunC⁡0,0,0,0,14,−x−y24⁢x⁢y,arctan⁡y,x=−HeunC⁡0,1,0,0,12,I⁢y−x2+y2+xx2+y2⁢1+I⁢y−x2+y2+xx2+y2⁢−I⁢y+x2+y2−xI⁢x−y,arcsin⁡z=z⁢HeunC⁡0,12,0,0,14,z2z2−1−z2+1
A sample of special and elementary functions not admitting HeunG representation
functions_1F1≔erf⁡z,dawson⁡z,Ei⁡a,z,LaguerreL⁡a,b,z,hypergeom⁡a,b,z,MeijerG⁡a,,0,b,z,cos⁡z,sin⁡z
functions_1F1≔erf⁡z,dawson⁡z,Eia⁡z,LaguerreL⁡a,b,z,hypergeom⁡a,b,z,MeijerG⁡a,,0,b,z,cos⁡z,sin⁡z
By default, the results are returned in terms of the lower Heun functions, that is, those with less parameters, in this case HeunB
map⁡u↦u=convert⁡u,Heun,functions_1F1
erf⁡z=2⁢z⁢HeunB⁡1,0,1,0,−z2π,dawson⁡z=z⁢HeunB⁡1,0,1,0,z2ⅇz2,Eia⁡z=HeunB⁡2−2⁢a,0,2⁢a,0,−za−1+za−1⁢Γ⁡1−a,LaguerreL⁡a,b,z=a+ba⁢HeunB⁡2⁢b,0,2⁢b+2+4⁢a,0,z,hypergeom⁡a,b,z=HeunB⁡2⁢b−2,0,2⁢b−4⁢a,0,z,MeijerG⁡a,,0,b,z=Γ⁡1−a⁢HeunB⁡−2⁢b,0,−2−2⁢b+4⁢a,0,−zΓ⁡1−b,cos⁡z=2⁢z+π⁢HeunB⁡2,0,0,0,I⁢2⁢z+π2⁢ⅇI2⁢2⁢z+π,sin⁡z=z⁢HeunB⁡2,0,0,0,2⁢I⁢zⅇI⁢z
A representation in terms of higher Heun functions, in this case HeunC, because these functions being converted belong to the 1F1 class, can be obtained specifying HeunC instead of Heun in the call to convert
map⁡u↦u=convert⁡u,HeunC,functions_1F1
erf⁡z=2⁢−z3+z⁢HeunC⁡1,12,1,−14,34,z2π,dawson⁡z=z⁢HeunC⁡1,12,1,−14,34,−z2⁢z2+1ⅇz2,Eia⁡z=1−z⁢HeunC⁡1,1−a,1,−a2,12+a2,za−1+za−1⁢Γ⁡1−a,LaguerreL⁡a,b,z=a+ba⁢HeunC⁡1,b,1,−b2−12−a,b2+1+a,−z⁢z+1,hypergeom⁡a,b,z=HeunC⁡1,b−1,1,−b2+a,b2−a+12,−z⁢z+1,MeijerG⁡a,,0,b,z=Γ⁡1−a⁢HeunC⁡1,−b,1,b2−a+12,−b2+a,z⁢1−zΓ⁡1−b,cos⁡z=2⁢z+π⁢HeunC⁡1,1,1,0,12,−I⁢2⁢z+π⁢I⁢π+2⁢I⁢z+12⁢ⅇI2⁢2⁢z+π,sin⁡z=2⁢I⁢z2+z⁢HeunC⁡1,1,1,0,12,−2⁢I⁢zⅇI⁢z
See Also
convert
convert[`1F1`]
convert[`2F1`]
convert[to_special_function]
FunctionAdvisor
Heun functions
HeunB
HeunC
HeunG
Download Help Document