orthopoly
L
Laguerre polynomial
Calling Sequence
Parameters
Description
Examples
L(n, a, x)
L(n, x)
n
-
non-negative integer
a
rational number greater than -1 or nonrational algebraic expression
x
algebraic expression
The L(n, a, x) function computes the nth generalized Laguerre polynomial with parameter a evaluated at x.
In the two argument case, L(n, x) computes the nth Laguerre polynomial which is equal to L(n, 0, x).
The generalized Laguerre polynomials are orthogonal on the interval 0,infinity with respect to the weight function w⁡x=ⅇ−x⁢xa. They satisfy:
∫0∞w⁡t⁢L⁡m,a,t⁢L⁡n,a,tⅆt=0n≠mΓ⁡a+n+1n!n=m
For positive integer a, L⁡n,a,x is related to L⁡n,x by:
L⁡n,a,x=−1a⁢ⅆaⅆxa⁢L⁡n+a,x
Some references define the generalized Laguerre polynomials differently from Maple. Denote the alternate function as altL⁡n,a,x. It is defined as:
altL⁡n,a,x=ⅆaⅆxa⁢altL⁡n,x
altL⁡n,x=n!⁢L⁡n,x
For a general positive integer a, the Maple orthopoly[L] function is related to altL by:
altL⁡n,a,x=−1a⁢n!⁢L⁡n−a,a,x
Laguerre polynomials satisfy the following recurrence relation.
L⁡0,a,x=1,
L⁡1,a,x=−x+1+a,
L⁡n,a,x=2⁢n+a−1−x⁢L⁡n−1,a,xn−n+a−1⁢L⁡n−2,a,xn,for n>1.
with⁡orthopoly:
L⁡3,x
1−3⁢x+32⁢x2−16⁢x3
L⁡15,5
−19982258571307674368
L⁡2,1,x
3−3⁢x+12⁢x2
L⁡11,−17,58
40912499266488426014273327119645385619965562847232
Using the alternate definition for the Laguerre polynomials:
altL≔n,a,x↦−1a⋅n!⋅orthopolyL⁡n−a,a,x:
altL⁡3,1,x
−3⁢x2+18⁢x−18
See Also
GAMMA
LaguerreL
Download Help Document