Dynamic Systems - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : System : Information : Updates : Maple 18 : Dynamic Systems

Dynamic Systems

 

Maple provides a series of control systems design tools that give you the ability to work analytically with linear time-invariant dynamic systems. The DynamicSystems package is a collection of procedures for creating, manipulating, simulating, and plotting linear time-invariant systems models. Maple 18 includes several updates to existing commands as well as new commands:

• 

Updated options for all system constructors, the StateSpace command, and the ToDiscrete command.

• 

New commands for interconnecting systems, working with discrete systems, and computing norms and covariance matrices.

withDynamicSystems:

 

Parameters Option

StateSpace Options

ToDiscrete Methods

Connection Commands

ToContinuous and Resample Commands

Norms and Noise Analysis

See Also

Parameters Option

All system constructors, such as TransferFunction and DiffEquation, now accept a parameters option that consists of a list of equations specifying the parameter names and corresponding values. These parameters are used by procedures that require numeric values, for example, the plot routines. Most procedures that require numeric systems also provide a parameters option that can override the parameters assigned to the system.

sys:=TransferFunctionAs+ω,parameters=A=1,ω=2:

MagnitudePlotsys

Here, the parameters option of the plot procedure overrides the parameter A in the object:

MagnitudePlotsys,parameters=A=100

StateSpace Options

Random Systems

The StateSpace constructor accepts new options such as randomtest and genbound which are useful for generating random stable state-space systems.

ss1:=StateSpace'randomtest','numstates'=3,'numinputs'=2,'numoutputs'=1,'genbound'=5.:

PrintSystemss1

Symbolic Systems

The StateSpace constructor also accepts the usesymbols keyword option, which can be used to construct state matrices with symbolic elements.

ss2:=StateSpace'numstates'=3,'numinputs'=2,'numoutputs'=1,'usesymbols':

PrintSystemss2

State Spacecontinuous1 output(s); 2 input(s); 3 state(s)inputvariable=u1t,u2toutputvariable=y1tstatevariable=x1t,x2t,x3ta=a1,1a1,2a1,3a2,1a2,2a2,3a3,1a3,2a3,3b=b1,1b1,2b2,1b2,2b3,1b3,2c=c1,1c1,2c1,3d=d1,1d1,2

(2.2.1)

ToDiscrete Methods

A new method for discretization, first-order hold (foh), has been added to the ToDiscrete command. Like the zero-order hold method, this method can be applied to state-space, transfer-function, and coefficient system types.

Connection Commands

A number of new commands for interconnecting systems have been added:

• 

AppendConnect: Create the equivalent system representation of two or more system objects combined by appending their inputs and outputs.

• 

FeedbackConnect: Create the equivalent system representation of one or two system objects with positive or negative feedback connection.

• 

ParallelConnect: Create the equivalent system representation of two or more system objects connected in parallel.

• 

SeriesConnect: Create the equivalent system representation of two or more system objects connected in series.

sys1:=StateSpaceusesymbols,numstates=2,numinputs=1,numoutputs=1,symbols=A1,B1,C1,D1:

PrintSystemsys1

State Spacecontinuous1 output(s); 1 input(s); 2 state(s)inputvariable=u1toutputvariable=y1tstatevariable=x1t,x2ta=A11,1A11,2A12,1A12,2b=B11,1B12,1c=C11,1C11,2d=D11,1

(4.1)

sys2:=StateSpaceusesymbols,numstates=2,numinputs=1,numoutputs=1,symbols=A2,B2,C2,D2:

PrintSystemsys2

State Spacecontinuous1 output(s); 1 input(s); 2 state(s)inputvariable=u1toutputvariable=y1tstatevariable=x1t,x2ta=A21,1A21,2A22,1A22,2b=B21,1B22,1c=C21,1C21,2d=D21,1

(4.2)

sys_series:=SeriesConnectsys1,sys2:

PrintSystemsys_series

State Spacecontinuous1 output(s); 1 input(s); 4 state(s)inputvariable=u1toutputvariable=y1tstatevariable=x1t,x2t,x3t,x4ta=A11,1A11,200A12,1A12,200B21,1C11,1B21,1C11,2A21,1A21,2B22,1C11,1B22,1C11,2A22,1A22,2b=B11,1B12,1B21,1D11,1B22,1D11,1c=D21,1C11,1D21,1C11,2C21,1C21,2d=D21,1D11,1

(4.3)

sys_parallel:=ParallelConnectsys1,sys2:

PrintSystemsys_parallel

State Spacecontinuous1 output(s); 1 input(s); 4 state(s)inputvariable=u1toutputvariable=y1tstatevariable=x1t,x2t,x3t,x4ta=A11,1A11,200A12,1A12,20000A21,1A21,200A22,1A22,2b=B11,1B12,1B21,1B22,1c=C11,1C11,2C21,1C21,2d=D11,1+D21,1

(4.4)

ToContinuous and Resample Commands

The ToContinuous command converts discrete systems to continuous systems using a specified conversion method.

sysd:=TransferFunction1z+a,discrete,parameters=a=3:

sysc1:=ToContinuoussysd,method=forward:

PrintSystemsysc1

Transfer Functioncontinuous1 output(s); 1 input(s)inputvariable=u1soutputvariable=y1stf1,1=1s+1+a

(5.1)

sysc2:=ToContinuoussysd,method=prewarp:

PrintSystemsysc2

Transfer Functioncontinuous1 output(s); 1 input(s)inputvariable=u1soutputvariable=y1stf1,1=s2.ass2.a2.

(5.2)

The Resample command resamples a discrete system with a new sampling time.

sysd2:=Resamplesysd,2,method=prewarp:

PrintSystemsysd2

Transfer Functiondiscrete; sampletime = 21 output(s); 1 input(s)inputvariable=u1zoutputvariable=y1ztf1,1=z+3.az+3.z+3.a+1

(5.3)

Norms and Noise Analysis

The NormH2 and NormHinf  commands compute the H__2 and H__∞ norms, respectively, of a system.

sys:=TransferFunction1s+12:

NormH2sys

0.500000000000000

(6.1)

NormHinfsys

1.000001000

(6.2)

The Covariance command computes the output covariance Matrix with the inputs driven by white Gaussian noise.

Covariancesys,1

See Also

DynamicSystems