mathfunc - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


type/mathfunc

check for mathematical functions

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

type(f, mathfunc)

Parameters

f

-

name

Description

• 

This procedure checks to see if the given name, f, is the name of a mathematical function known to Maple.

• 

The definition of a mathematical function, in this context, is heuristic but reasonably effective: A name, g, is considered to represent a mathematical function if either g has been defined as an operator or there exists a routine called evalf/g.  (See evalf for more details about numerical evaluation of functions and expressions.)

• 

The following top-level mathematical functions are known to type/mathfunc:

abs

AiryAi

AiryAiZeros

AiryBi

AiryBiZeros

AngerJ

AppellF1

AppellF2

AppellF3

AppellF4

arccos

arccosh

arccot

arccoth

arccsc

arccsch

arcsec

arcsech

arcsin

arcsinh

arctan

arctanh

argument

BellB

BesselI

BesselJ

BesselJZeros

BesselK

BesselY

BesselYZeros

Beta

binomial

ceil

ChebyshevT

ChebyshevU

Chi

Ci

CompleteBellB

conjugate

cos

cosh

cot

coth

CoulombF

csc

csch

csgn

CylinderD

CylinderU

CylinderV

D

dawson

dilog

Dirac

doublefactorial

Ei

EllipticCE

EllipticCK

EllipticCPi

EllipticE

EllipticF

EllipticK

EllipticModulus

EllipticNome

EllipticPi

erf

erfc

erfi

Eval

exp

Factor

factorial

Factors

floor

frac

FresnelC

Fresnelf

Fresnelg

FresnelS

GAMMA

GaussAGM

GegenbauerC

GeneralizedPolylog

HankelH1

HankelH2

harmonic

Heaviside

HermiteH

HeunB

HeunBPrime

HeunC

HeunCPrime

HeunD

HeunDPrime

HeunG

HeunGPrime

HeunT

HeunTPrime

hypergeom

Hypergeom

ilog

ilog10

Im

IncompleteBellB

int

Int

InverseJacobiAM

InverseJacobiCD

InverseJacobiCN

InverseJacobiCS

InverseJacobiDC

InverseJacobiDN

InverseJacobiDS

InverseJacobiNC

InverseJacobiND

InverseJacobiNS

InverseJacobiSC

InverseJacobiSD

InverseJacobiSN

JacobiAM

JacobiCD

JacobiCN

JacobiCS

JacobiDC

JacobiDN

JacobiDS

JacobiNC

JacobiND

JacobiNS

JacobiP

JacobiSC

JacobiSD

JacobiSN

JacobiTheta1

JacobiTheta2

JacobiTheta3

JacobiTheta4

JacobiZeta

KelvinBei

KelvinBer

KelvinHei

KelvinHer

KelvinKei

KelvinKer

KummerM

KummerU

LaguerreL

LambertW

LegendreP

LegendreQ

LerchPhi

Li

limit

Limit

ln

lnGAMMA

log

log10

log2

LommelS1

LommelS2

MathieuA

MathieuB

MathieuC

MathieuCE

MathieuCEPrime

MathieuCPrime

MathieuExponent

MathieuFloquet

MathieuFloquetPrime

MathieuS

MathieuSE

MathieuSEPrime

MathieuSPrime

max

MeijerG

min

MultiPolylog

MultiZeta

piecewise

pochhammer

polar

polylog

product

Product

Psi

Re

RealRange

RiemannTheta

RootOf

round

sec

sech

Shi

Si

signum

sin

sinh

SphericalY

sqrt

Ssi

StruveH

StruveL

sum

Sum

surd

tan

tanh

trunc

WeberE

WeierstrassP

WeierstrassPPrime

WeierstrassSigma

WeierstrassZeta

WhittakerM

WhittakerW

Wrightomega

Zeta

 

 

Examples

typeh,mathfunc

false

(1)

`evalf/h` := proc(x) evalf(x^2); end:

typeh,mathfunc

true

(2)

typexx2,mathfunc

true

(3)

See Also

evalf

inifcns

operators

type