OrthogonalSeries
ChangeBasis
change the expansion basis of a series
Calling Sequence
Parameters
Description
Examples
ChangeBasis(p, P1,.., Pk)
ChangeBasis(S, P1,.., Pk)
p
-
polynomial expression
S
orthogonal series
P1, .., Pk
classical orthogonal polynomials
The ChangeBasis(p, P1, .., Pk) calling sequence creates a series expanded in terms of the polynomials P1, .., Pk that is equal to the polynomial p. The polynomials P1, .., Pk must have distinct indices and variables, and be in the OrthogonalSeries database.
The ChangeBasis(S, P1, .., Pk) calling sequence replaces each polynomial in S by the polynomial Pi that depends on the same variable if it exists. If multiple polynomials Pi, .., Pj share the same variable, the last one is used.
If the series S is infinite, the change of polynomial is not necessarily possible for every Pi. For infinite series, the ChangeBasis routine attempts an iterated derivative representation transform to perform the change of polynomials. If the process fails for some Pi, it is ignored and a warning message is printed.
with⁡OrthogonalSeries:
S≔ChangeBasis⁡1+2⁢x+3⁢x3,GegenbauerC⁡n,1,x
S≔GegenbauerC⁡0,1,x+7⁢GegenbauerC⁡1,1,x4+3⁢GegenbauerC⁡3,1,x8
ChangeBasis⁡S,LaguerreL⁡n,23,x
479⁢LaguerreL⁡0,23,x9−90⁢LaguerreL⁡1,23,x+66⁢LaguerreL⁡2,23,x−18⁢LaguerreL⁡3,23,x
S1≔ChangeBasis⁡y2+x2−1,ChebyshevU⁡m,y,LaguerreL⁡n,1,x
S1≔21⁢ChebyshevU⁡0,y⁢LaguerreL⁡0,1,x4−6⁢ChebyshevU⁡0,y⁢LaguerreL⁡1,1,x+2⁢ChebyshevU⁡0,y⁢LaguerreL⁡2,1,x+ChebyshevU⁡2,y⁢LaguerreL⁡0,1,x4
ChangeBasis⁡S1,ChebyshevU⁡n,x,LaguerreL⁡m,1,y
21⁢LaguerreL⁡0,1,y⁢ChebyshevU⁡0,x4+LaguerreL⁡0,1,y⁢ChebyshevU⁡2,x4−6⁢LaguerreL⁡1,1,y⁢ChebyshevU⁡0,x+2⁢LaguerreL⁡2,1,y⁢ChebyshevU⁡0,x
ChangeBasis⁡S1,Kravchouk⁡n,27,N,x,LaguerreL⁡m,1,y
5+449⁢N2+1049⁢N⁢LaguerreL⁡0,1,y⁢Kravchouk⁡0,27,N,x+4⁢N7+37⁢LaguerreL⁡0,1,y⁢Kravchouk⁡1,27,N,x+2⁢LaguerreL⁡0,1,y⁢Kravchouk⁡2,27,N,x−6⁢LaguerreL⁡1,1,y⁢Kravchouk⁡0,27,N,x+2⁢LaguerreL⁡2,1,y⁢Kravchouk⁡0,27,N,x
ChangeBasis⁡sum⁡xk,k=0..5⁢sum⁡yk,k=0..5,ChebyshevT⁡n,x,ChebyshevT⁡m,y
ChebyshevT⁡4,x⁢ChebyshevT⁡2,y8+9⁢ChebyshevT⁡4,x⁢ChebyshevT⁡3,y128+ChebyshevT⁡4,x⁢ChebyshevT⁡4,y64+ChebyshevT⁡4,x⁢ChebyshevT⁡5,y128+15⁢ChebyshevT⁡5,x⁢ChebyshevT⁡0,y128+19⁢ChebyshevT⁡5,x⁢ChebyshevT⁡1,y128+ChebyshevT⁡5,x⁢ChebyshevT⁡2,y16+9⁢ChebyshevT⁡5,x⁢ChebyshevT⁡3,y256+ChebyshevT⁡5,x⁢ChebyshevT⁡4,y128+ChebyshevT⁡5,x⁢ChebyshevT⁡5,y256+225⁢ChebyshevT⁡0,x⁢ChebyshevT⁡0,y64+285⁢ChebyshevT⁡0,x⁢ChebyshevT⁡1,y64+15⁢ChebyshevT⁡0,x⁢ChebyshevT⁡2,y8+135⁢ChebyshevT⁡0,x⁢ChebyshevT⁡3,y128+15⁢ChebyshevT⁡0,x⁢ChebyshevT⁡4,y64+15⁢ChebyshevT⁡0,x⁢ChebyshevT⁡5,y128+285⁢ChebyshevT⁡1,x⁢ChebyshevT⁡0,y64+361⁢ChebyshevT⁡1,x⁢ChebyshevT⁡1,y64+19⁢ChebyshevT⁡1,x⁢ChebyshevT⁡2,y8+171⁢ChebyshevT⁡1,x⁢ChebyshevT⁡3,y128+19⁢ChebyshevT⁡1,x⁢ChebyshevT⁡4,y64+19⁢ChebyshevT⁡1,x⁢ChebyshevT⁡5,y128+15⁢ChebyshevT⁡2,x⁢ChebyshevT⁡0,y8+19⁢ChebyshevT⁡2,x⁢ChebyshevT⁡1,y8+ChebyshevT⁡2,x⁢ChebyshevT⁡2,y+9⁢ChebyshevT⁡2,x⁢ChebyshevT⁡3,y16+ChebyshevT⁡2,x⁢ChebyshevT⁡4,y8+ChebyshevT⁡2,x⁢ChebyshevT⁡5,y16+135⁢ChebyshevT⁡3,x⁢ChebyshevT⁡0,y128+171⁢ChebyshevT⁡3,x⁢ChebyshevT⁡1,y128+9⁢ChebyshevT⁡3,x⁢ChebyshevT⁡2,y16+81⁢ChebyshevT⁡3,x⁢ChebyshevT⁡3,y256+9⁢ChebyshevT⁡3,x⁢ChebyshevT⁡4,y128+9⁢ChebyshevT⁡3,x⁢ChebyshevT⁡5,y256+15⁢ChebyshevT⁡4,x⁢ChebyshevT⁡0,y64+19⁢ChebyshevT⁡4,x⁢ChebyshevT⁡1,y64
S2≔Create⁡u⁡n,LaguerreL⁡n,a,x
S2≔∑n=0∞⁡u⁡n⁢LaguerreL⁡n,a,x
ChangeBasis⁡S2,ChebyshevT⁡n,x
Warning : impossible change of basis for this infinite series
∑n=0∞⁡u⁡n⁢LaguerreL⁡n,a,x
ChangeBasis⁡S2,LaguerreL⁡n,a+1,x
∑n=0∞⁡u⁡n−u⁡n+1⁢LaguerreL⁡n,a+1,x
S3≔Create⁡1n!,n=3..∞,2=1,JacobiP⁡n,2,2,x
S3≔JacobiP⁡2,2,2,x+∑n=3∞⁡JacobiP⁡n,2,2,xn!
C1≔ChangeBasis⁡S3,JacobiP⁡n,2,2+1,x
C1≔4⁢JacobiP⁡1,2,3,x9+169⁢JacobiP⁡2,2,3,x198+∑n=3∞⁡2⁢n+1!⁢n2+2⁢n!⁢n2+17⁢n+1!⁢n+11⁢n!⁢n+35⁢n+1!+15⁢n!⁢JacobiP⁡n,2,3,x2⁢n+7⁢n+1!⁢2⁢n+5⁢n!
SimplifyCoefficients⁡C1,simplify
4⁢JacobiP⁡1,2,3,x9+169⁢JacobiP⁡2,2,3,x198+∑n=3∞⁡2⁢n3+21⁢n2+63⁢n+50⁢JacobiP⁡n,2,3,x4⁢n2+24⁢n+35⁢n+1!
C2≔ChangeBasis⁡S3,GegenbauerC⁡n,2+12,x
C2≔2⁢GegenbauerC⁡2,52,x5+∑n=3∞⁡12⁢GegenbauerC⁡n,52,xn!⁢2n⁢2−n⁢3+n⁢4+n
SimplifyCoefficients⁡C2,simplify
2⁢GegenbauerC⁡2,52,x5+∑n=3∞⁡12⁢GegenbauerC⁡n,52,xn!⁢3+n⁢4+n
S5≔Create⁡u⁡n,m,JacobiP⁡n,1,1,x,LaguerreL⁡m,2,y
S5≔∑m=0∞⁡∑n=0∞⁡u⁡n,m⁢JacobiP⁡n,1,1,x⁢LaguerreL⁡m,2,y
C3≔ChangeBasis⁡S5,LaguerreL⁡n,2+1,y,JacobiP⁡m,2,1,x
C3≔∑m=0∞⁡∑n=0∞⁡2⁢u⁡n+1,m+1⁢n2−2⁢u⁡n,m+1⁢n2−2⁢u⁡n+1,m⁢n2+2⁢u⁡n,m⁢n2+7⁢u⁡n+1,m+1⁢n−11⁢u⁡n,m+1⁢n−7⁢u⁡n+1,m⁢n+11⁢u⁡n,m⁢n+6⁢u⁡n+1,m+1−15⁢u⁡n,m+1−6⁢u⁡n+1,m+15⁢u⁡n,m⁢JacobiP⁡n,2,1,x2⁢n+5⁢2⁢n+3⁢LaguerreL⁡m,3,y
SimplifyCoefficients⁡C3,collect,u
∑m=0∞⁡∑n=0∞⁡2⁢n2+11⁢n+15⁢u⁡n,m2⁢n+5⁢2⁢n+3+−2⁢n2−11⁢n−15⁢u⁡n,m+12⁢n+5⁢2⁢n+3+−2⁢n2−7⁢n−6⁢u⁡n+1,m2⁢n+5⁢2⁢n+3+2⁢n2+7⁢n+6⁢u⁡n+1,m+12⁢n+5⁢2⁢n+3⁢JacobiP⁡n,2,1,x⁢LaguerreL⁡m,3,y
See Also
ChebyshevT
ChebyshevU
GegenbauerC
JacobiP
LaguerreL
OrthogonalSeries[Create]
OrthogonalSeries[SimplifyCoefficients]
Download Help Document