OrthogonalSeries
GetInfo
return information about hypergeometric orthogonal polynomials
Calling Sequence
Parameters
Description
Examples
GetInfo(P, subject, optional_arg)
P
-
hypergeometric polynomial
subject
literal name; one of recurrence, structural, hypergeom, derivative, and derivative_representation
optional_arg
(optional) equation of the form root=val where val is an expression
The GetInfo(P, subject) command returns information about the hypergeometric polynomial P that depends on the value of subject.
hypergeom: hypergeometric functional equation satisfied by P and the normalization coefficient of the Rodrigues formula.
recurrence: three-term recurrence for P.
derivative: derivative of P.
structural: structural relation(s). If the optional equation root=val is specified, GetInfo returns the partial structural relation with respect to val. This is available for only continuous hypergeometric polynomials.
derivative_representation: derivative representation for P. If the optional equation root=val is specified, GetInfo returns the partial derivative representation with respect to val. This is available for only continuous hypergeometric polynomials.
with(OrthogonalSeries) :
GetInfo(LaguerreL(n,1,x),derivative_representation);
LaguerreL⁡n,1,x=LaguerreL⁡n,2,x−LaguerreL⁡n−1,2,x
GetInfo(LaguerreL(n,1,x),hypergeom);
x⁢ⅆ2ⅆx2LaguerreL⁡n,1,x+−x+2⁢ⅆⅆxLaguerreL⁡n,1,x+n⁢LaguerreL⁡n,1,x=0,_B⁡n=1n!
GetInfo(LaguerreL(n,1,x),recurrence);
x⁢LaguerreL⁡n,1,x=2+2⁢n⁢LaguerreL⁡n,1,x+−1−n⁢LaguerreL⁡n−1,1,x+−1−n⁢LaguerreL⁡n+1,1,x
GetInfo(LaguerreL(n,1,x),structural);
x⁢ⅆⅆxLaguerreL⁡n,1,x=n⁢LaguerreL⁡n,1,x+−1−n⁢LaguerreL⁡n−1,1,x
GetInfo(JacobiP(n,alpha,beta,x),structural,root=-1);
GetInfo(HermiteH(n,x),hypergeom);
ⅆ2ⅆx2HermiteH⁡n,x−2⁢x⁢ⅆⅆxHermiteH⁡n,x+2⁢n⁢HermiteH⁡n,x=0,_B⁡n=−1n
GetInfo(HermiteH(n,x),structural);
ⅆⅆxHermiteH⁡n,x=2⁢n⁢HermiteH⁡n−1,x
GetInfo(HermiteH(n,x),derivative);
GetInfo(ChebyshevT(n,x),structural);
GetInfo(ChebyshevT(n,x),derivative);
ⅆⅆxChebyshevT⁡n,x=n⁢ChebyshevU⁡n−1,x
See Also
ChebyshevT
HermiteH
JacobiP
LaguerreL
Download Help Document