GetInfo - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


OrthogonalSeries

  

GetInfo

  

return information about hypergeometric orthogonal polynomials

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

GetInfo(P, subject, optional_arg)

Parameters

P

-

hypergeometric polynomial

subject

-

literal name; one of recurrence, structural, hypergeom, derivative, and derivative_representation

optional_arg

-

(optional) equation of the form root=val where val is an expression

Description

• 

The GetInfo(P, subject) command returns information about the hypergeometric polynomial P that depends on the value of subject.

  

hypergeom: hypergeometric functional equation satisfied by P and the normalization coefficient of the Rodrigues formula.

  

recurrence: three-term recurrence for P.

  

derivative: derivative of P.

  

structural: structural relation(s). If the optional equation root=val is specified, GetInfo returns the partial structural relation with respect to val. This is available for only continuous hypergeometric polynomials.

  

derivative_representation: derivative representation for P. If the optional equation root=val is specified, GetInfo returns the partial derivative representation with respect to val. This is available for only continuous hypergeometric polynomials.

Examples

with(OrthogonalSeries) :

GetInfo(LaguerreL(n,1,x),derivative_representation);

LaguerreLn,1,x=LaguerreLn,2,xLaguerreLn1,2,x

(1)

GetInfo(LaguerreL(n,1,x),hypergeom);

xⅆ2ⅆx2LaguerreLn,1,x+x+2ⅆⅆxLaguerreLn,1,x+nLaguerreLn,1,x=0,_Bn=1n!

(2)

GetInfo(LaguerreL(n,1,x),recurrence);

xLaguerreLn,1,x=2+2nLaguerreLn,1,x+1nLaguerreLn1,1,x+1nLaguerreLn+1,1,x

(3)

GetInfo(LaguerreL(n,1,x),structural);

xⅆⅆxLaguerreLn,1,x=nLaguerreLn,1,x+1nLaguerreLn1,1,x

(4)

GetInfo(JacobiP(n,alpha,beta,x),structural,root=-1);

(5)

GetInfo(HermiteH(n,x),hypergeom);

ⅆ2ⅆx2HermiteHn,x2xⅆⅆxHermiteHn,x+2nHermiteHn,x=0,_Bn=−1n

(6)

GetInfo(HermiteH(n,x),structural);

ⅆⅆxHermiteHn,x=2nHermiteHn1,x

(7)

GetInfo(HermiteH(n,x),derivative);

ⅆⅆxHermiteHn,x=2nHermiteHn1,x

(8)

GetInfo(ChebyshevT(n,x),structural);

(9)

GetInfo(ChebyshevT(n,x),derivative);

ⅆⅆxChebyshevTn,x=nChebyshevUn1,x

(10)

See Also

ChebyshevT

HermiteH

JacobiP

LaguerreL

OrthogonalSeries