convert/Chebyshev
convert special functions admitting 2F1 hypergeometric representation into Chebyshev functions
Calling Sequence
Parameters
Description
Examples
convert(expr, Chebyshev)
expr
-
Maple expression, equation, or a set or list of them
convert/Chebyshev converts, when possible, special functions admitting a 2F1 hypergeometric representation into Chebyshev functions (see ?ChebyshevT and ?ChebyshevU). The Chebyshev functions are
FunctionAdvisor( Chebyshev );
The 2 functions in the "Chebyshev" class are:
ChebyshevT,ChebyshevU
a+1⁢hypergeom⁡−a,a+2,32,12−12⁢z
a+1⁢hypergeom⁡−a,a+2,32,12−z2
convert⁡,Chebyshev
ChebyshevU⁡a,z
JacobiP⁡−a+b,−12,−12,12⁢z+JacobiP⁡a−b,12,12,12⁢z
JacobiP⁡−a+b,−12,−12,z2+JacobiP⁡a−b,12,12,z2
−a+b−12−12⁢ChebyshevT⁡a−b,z2+a−b+1212⁢ChebyshevU⁡a−b,z2a−b+1
−1π12⁢sin⁡π⁢a⁢a⁢MeijerG⁡1−a,a+1,,0,12,−12+12⁢z
−sin⁡π⁢a⁢a⁢MeijerG⁡1−a,a+1,,0,12,−12+z2π
simplify⁡convert⁡,Chebyshev
ChebyshevT⁡a,z
When converting to a function class (e.g. Chebyshev) it is possible to request additional conversion rules to be performed. Compare for instance these two different outputs:
GegenbauerC⁡a,1,z
convert⁡,Chebyshev,raise a
ChebyshevU⁡−4−a,z−2⁢z⁢ChebyshevU⁡−3−a,z
See Also
convert
convert/to_special_function
FunctionAdvisor
Download Help Document